Solve the Quadratic Inequality: -x² + 3x + 4 < 0

Question

Solve the following equation:

-x^2+3x+4<0

Video Solution

Step-by-Step Solution

To solve the inequality x2+3x+4<0 -x^2 + 3x + 4 < 0 , we begin by finding the roots of the equation x2+3x+4=0 -x^2 + 3x + 4 = 0 .

Step 1: Calculate the discriminant using b24ac b^2 - 4ac with a=1 a = -1 , b=3 b = 3 , and c=4 c = 4 :
Δ=324×(1)×4=9+16=25\Delta = 3^2 - 4 \times (-1) \times 4 = 9 + 16 = 25

Step 2: Compute the roots using the quadratic formula:
x=b±Δ2a=3±252x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-3 \pm \sqrt{25}}{-2}

Calculating the roots:
First root: x1=3+52=1x_1 = \frac{-3 + 5}{-2} = -1
Second root: x2=352=4x_2 = \frac{-3 - 5}{-2} = 4

Step 3: Analyze intervals defined by the roots 1-1 and 44. Given that the parabola opens downwards, we check intervals (,1)(-\infty, -1), (1,4)(-1, 4), and (4,)(4, \infty).

Testing a point in each interval to determine the sign:
Interval (,1)(-\infty, -1), test x=2x = -2: (2)2+3(2)+4=46+4=6-(-2)^2 + 3(-2) + 4 = -4 - 6 + 4 = -6 (negative)
Interval (1,4)(-1, 4), test x=0x = 0: 02+3(0)+4=4-0^2 + 3(0) + 4 = 4 (positive)
Interval (4,)(4, \infty), test x=5x = 5: (5)2+3(5)+4=25+15+4=6-(5)^2 + 3(5) + 4 = -25 + 15 + 4 = -6 (negative)

From the test results, the quadratic expression is negative in the intervals (,1)(-\infty, -1) and (4,)(4, \infty).

Therefore, the solution to the inequality x2+3x+4<0 -x^2 + 3x + 4 < 0 is x<1 x < -1 or 4<x 4 < x .

Answer

x < -1,4 < x


Related Subjects