Solve x² + 4 > 0: Understanding Quadratic Inequalities

Solve the following equation:

x2+4>0 x^2+4>0

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Solve the following equation:

x2+4>0 x^2+4>0

2

Step-by-step solution

To solve this problem, let's examine the inequality x2+4>0 x^2 + 4 > 0 .

The expression x2+4 x^2 + 4 consists of two terms: x2 x^2 and 4 4 . Notice that:

  • The term x2 x^2 is always non-negative, which means x20 x^2 \geq 0 for any real number x x .
  • The constant term 4 4 is positive.

Combining these observations, we see that:

  • Since x2 x^2 is non-negative, x2+44 x^2 + 4 \geq 4 .
  • Therefore, x2+4 x^2 + 4 is always greater than zero, as adding 4 to a non-negative number will always yield a positive result.

Thus, there are no values of x x for which the expression x2+4 x^2 + 4 is zero or negative. Instead, the expression is always positive for all real numbers x x .

Therefore, the solution to the inequality x2+4>0 x^2 + 4 > 0 is all values of x x .

3

Final Answer

All values of x x

Practice Quiz

Test your knowledge with interactive questions

Solve the following equation:

\( x^2+4>0 \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Equations and Systems of Quadratic Equations questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations