Solve y = x²: Finding Points Where y = 16

Question

Given the function:

y=x2 y=x^2

Is there a point for ? y=16 y=16 ?

Video Solution

Step-by-Step Solution

The problem asks us to find an x x such that in the function y=x2 y = x^2 , the value of y y becomes 16. To do this, we'll substitute y=16 y = 16 into the equation and solve for x x .

1. Start with the equation of the function:

y=x2 y = x^2

2. Substitute y=16 y = 16 into the equation:

16=x2 16 = x^2

3. Solve x2=16 x^2 = 16 for x x :

  • Take the square root of both sides to solve for x x :
  • x=±16 x = \pm \sqrt{16}
  • This gives x=4 x = 4 or x=4 x = -4

4. Identify the points on the function for these values of x x :

  • For x=4 x = 4 , the point is (4,16)(4, 16).
  • For x=4 x = -4 , the point is (4,16)(-4, 16), but this is not provided in the choice list.

Among the given options, the point we find in the choices is:

(4,16) (4, 16)

Therefore, the correct answer is the choice that corresponds with this point:

(4,16) (4,16)

Answer

(4,16) (4,16)