Substitution Method Challenge: Solve for x and y in the System -x-2y=4, 3x+y=8

Question

Find the value of x and and band the substitution method.

{x2y=43x+y=8 \begin{cases} -x-2y=4 \\ 3x+y=8 \end{cases}

Video Solution

Step-by-Step Solution

Let's begin by solving the system of equations using the substitution method.

First, solve the second equation for yy:

3x+y=83x + y = 8

Solve for yy:

y=83xy = 8 - 3x

Next, substitute this expression for yy in the first equation:

x2(83x)=4-x - 2(8 - 3x) = 4

Distribute the 2-2:

x16+6x=4-x - 16 + 6x = 4

Combine like terms:

5x16=45x - 16 = 4

Add 16 to both sides:

5x=205x = 20

Divide by 5:

x=4x = 4

Now, substitute x=4x = 4 back into y=83xy = 8 - 3x to find yy:

y=83(4)y = 8 - 3(4)

y=812y = 8 - 12

y=4y = -4

Therefore, the solution to the system of equations is (x,y)=(4,4)(x, y) = (4, -4).

Thus, the values of xx and yy are x=4x = 4 and y=4y = -4.

Answer

x=4,y=4 x=4,y=-4