Substitution method for two linear equations with two unknowns

🏆Practice algebraic solution

To solve with the substitution method a system of two linear equations with two unknowns we will have to substitute one of the unknowns in some equation and thus obtain an equation with only one unknown.

How do we do it?

  • Choose the equation in which you can easily isolate one of the unknowns (isolate it in such a way that it cannot express itself).
  • Put the unknown that you have isolated in the second equation of the system: you will have an equation with one unknown and you will discover the value of the first one.
  • Go back to the system of equations and place the value of the unknown you found in one of the equations or in the equation obtained to find the second unknown.

Step-by-step solution of a system of equations using the substitution method. The equations 2X - Y = 5 and 2X + Y = 3 are solved by expressing Y in terms of X, substituting into the second equation, solving for X, and then finding Y. The final values are X = 2 and Y = -1.

Start practice

Test yourself on algebraic solution!

Solve the following equations:

\( \begin{cases} x+y=18 \\ y=13 \end{cases} \)

Practice more now

Example of the substitution method

X+2Y=20X+2Y=20
4X3Y=144X-3Y=14

Let's isolate the XX from the first equation since it is the easiest:
X=202YX=20-2Y
Let's substitute the XX in the second equation:
4×(202y)3y=144\times (20-2y)-3y=14
We obtained an equation with one unknown, therefore, we will solve it easily:
808y3y=1480-8y-3y=14
8011y=1480-11y=14
11y=66-11y=-66
y=6y=6

Let's place the value obtained in the simpler equation (the equation we obtained after isolating the X X ) and find the second unknown:
x=202×6x=20-2\times 6
x=8x=8
The solution is: x=8x=8
y=6y=6


Examples and exercises with solutions for solving using the substitution method for systems of two linear equations with two unknowns

Exercise #1

Solve the following equations:

{x+y=18y=13 \begin{cases} x+y=18 \\ y=13 \end{cases}

Video Solution

Step-by-Step Solution

To solve the system of equations using substitution, follow these steps:

  • The system of equations given is: {x+y=18y=13 \begin{cases} x + y = 18 \\ y = 13 \end{cases}
  • Step 1: Extract the given value for y y from the second equation: y=13 y = 13 .
  • Step 2: Substitute y=13 y = 13 into the first equation: x+13=18 x + 13 = 18
  • Step 3: Solve for x x by subtracting 13 13 from both sides of the equation: x=1813 x = 18 - 13
  • Step 4: After the subtraction, we find: x=5 x = 5

Therefore, the solution to the problem is x=5 x = 5 and y=13 y = 13 .

Answer

x=5,y=13 x=5,y=13

Exercise #2

Solve the following equations:

{2x+y=9x=5 \begin{cases} 2x+y=9 \\ x=5 \end{cases}

Video Solution

Step-by-Step Solution

To solve this system of equations, we'll use the substitution method as follows:

  • Step 1: Identify the given information.
    We have two equations: {2x+y=9x=5 \begin{cases} 2x + y = 9 \\ x = 5 \end{cases}
  • Step 2: Substitute x=5x = 5 into the first equation.
    The equation becomes: 2(5)+y=9 2(5) + y = 9 which simplifies to: 10+y=9 10 + y = 9
  • Step 3: Solve for yy.
    Subtract 10 from both sides: y=910 y = 9 - 10 y=1 y = -1
  • Step 4: Verify the solution.
    Substituting x=5x = 5 and y=1y = -1 back into the first equation confirms the solution:
    2(5)+(1)=101=9 2(5) + (-1) = 10 - 1 = 9

Both equations are satisfied with x=5x = 5 and y=1y = -1.

Therefore, the solution to the system of equations is x=5,y=1 x = 5, y = -1 .

Answer

x=5,y=1 x=5,y=-1

Exercise #3

Find the value of x and and band the substitution method.

{x+y=52x3y=15 \begin{cases} x+y=5 \\ 2x-3y=-15 \end{cases}

Video Solution

Step-by-Step Solution

To solve this system using the substitution method, we'll follow these steps:

  • Step 1: Solve the first equation for one variable.

  • Step 2: Substitute this expression into the second equation.

  • Step 3: Solve for the second variable.

  • Step 4: Use the value of the second variable to find the first variable.

Step 1: Solve the first equation x+y=5x + y = 5 for yy.
We have: y=5xy = 5 - x.

Step 2: Substitute y=5xy = 5 - x into the second equation 2x3y=152x - 3y = -15.
This gives us: 2x3(5x)=152x - 3(5 - x) = -15.

Step 3: Simplify and solve for x x :
2x15+3x=155x15=155x=0x=0. \begin{aligned} 2x - 15 + 3x &= -15 \\ 5x - 15 &= -15 \\ 5x &= 0 \\ x &= 0. \end{aligned}

Step 4: Substitute x=0x = 0 back into y=5xy = 5 - x to find yy.
y=50y=5. \begin{aligned} y &= 5 - 0 \\ y &= 5. \end{aligned}

Thus, the solution to the system of equations is x=0x = 0 and y=5y = 5.

The correct answer from the list of choices is: x=0,y=5x = 0, y = 5

Answer

x=0,y=5 x=0,y=5

Exercise #4

Find the value of x and and band the substitution method.

{x2y=43x+y=8 \begin{cases} -x-2y=4 \\ 3x+y=8 \end{cases}

Video Solution

Step-by-Step Solution

Let's begin by solving the system of equations using the substitution method.

First, solve the second equation for yy:

3x+y=83x + y = 8

Solve for yy:

y=83xy = 8 - 3x

Next, substitute this expression for yy in the first equation:

x2(83x)=4-x - 2(8 - 3x) = 4

Distribute the 2-2:

x16+6x=4-x - 16 + 6x = 4

Combine like terms:

5x16=45x - 16 = 4

Add 16 to both sides:

5x=205x = 20

Divide by 5:

x=4x = 4

Now, substitute x=4x = 4 back into y=83xy = 8 - 3x to find yy:

y=83(4)y = 8 - 3(4)

y=812y = 8 - 12

y=4y = -4

Therefore, the solution to the system of equations is (x,y)=(4,4)(x, y) = (4, -4).

Thus, the values of xx and yy are x=4x = 4 and y=4y = -4.

Answer

x=4,y=4 x=4,y=-4

Exercise #5

Solve the following system of equations:

{xy=52x3y=8 \begin{cases} x-y=5 \\ 2x-3y=8 \end{cases}

Video Solution

Step-by-Step Solution

To solve this system of linear equations using the elimination method, we will follow these steps:

Step 1: Align the equations for elimination.

  • Write the equations as they are given:

xy=5x - y = 5 (Equation 1)

2x3y=82x - 3y = 8 (Equation 2)

Step 2: Eliminate one variable.

  • Multiply Equation 1 by 2 to align the coefficient of xx with that in Equation 2:

2(xy)=2×52(x - y) = 2 \times 5

Thus, the transformed Equation 1 is:

2x2y=102x - 2y = 10 (Equation 3)

  • Subtract Equation 2 from Equation 3 to eliminate xx:

(2x2y)(2x3y)=108(2x - 2y) - (2x - 3y) = 10 - 8

This simplifies to:

y=2y = 2

Step 3: Solve for the other variable.

  • Substitute y=2y = 2 into Equation 1 to solve for xx.

x2=5x - 2 = 5

Solve for xx by adding 2 to both sides:

x=7x = 7

Therefore, the solution to the system of linear equations is x=7\mathbf{x = 7} and y=2\mathbf{y = 2}.

This solution matches the choice:

x=7,y=2x = 7, y = 2

Answer

x=7,y=2 x=7,y=2

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice