Examples with solutions for Subtraction of Logarithms: Inequality

Exercise #1

x=? x=\text{?}

log125log124log12xlog123 \log_{\frac{1}{2}}5-\log_{\frac{1}{2}}4\le\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}3

Video Solution

Step-by-Step Solution

To solve the inequality involving logarithms with base 12\frac{1}{2}, we will perform the following steps:

  • Step 1: Apply the subtraction property of logarithms.
  • Step 2: Simplify and solve the inequality.

Let's go through the steps:

Step 1: Simplify both sides using the logarithm subtraction rule:

Left side: log125log124=log12(54)\log_{\frac{1}{2}}5 - \log_{\frac{1}{2}}4 = \log_{\frac{1}{2}}\left(\frac{5}{4}\right)

Right side: log12xlog123=log12(x3)\log_{\frac{1}{2}}x - \log_{\frac{1}{2}}3 = \log_{\frac{1}{2}}\left(\frac{x}{3}\right)

This gives us the inequality:

log12(54)log12(x3)\log_{\frac{1}{2}}\left(\frac{5}{4}\right) \le \log_{\frac{1}{2}}\left(\frac{x}{3}\right)

Step 2: Since 12\frac{1}{2} is less than 1, the inequality sign flips when we remove the logarithms.

This gives: 54x3\frac{5}{4} \ge \frac{x}{3}

Multiplying both sides by 3 to solve for xx:

354x3 \cdot \frac{5}{4} \ge x

154x\frac{15}{4} \ge x

Thus, x154x \le \frac{15}{4}, which simplifies to x3.75x \le 3.75.

Since we assumed x>0x > 0, the final solution is:

0<x3.750 < x \le 3.75

Answer

0 < x\le3.75

Exercise #2

log23log2(x+3)8 \log_23-\log_2(x+3)\le8

Video Solution

Step-by-Step Solution

To solve this problem, we'll apply the properties of logarithms and inequality manipulation.

Initially, consider the given inequality:

log23log2(x+3)8 \log_2 3 - \log_2 (x + 3) \le 8

Using the quotient rule of logarithms, combine the logs:

log2(3x+3)8 \log_2 \left(\frac{3}{x + 3}\right) \le 8

The inequality log2(3x+3)8 \log_2 \left(\frac{3}{x + 3}\right) \le 8 can be rewritten by converting the logarithm to an exponential form:

3x+328 \frac{3}{x + 3} \le 2^8

Since 28=256 2^8 = 256 , substitute to get:

3x+3256 \frac{3}{x + 3} \le 256

To remove the fraction, multiply both sides by x+3 x + 3 , assuming x+3>0 x + 3 > 0 to maintain the inequality direction:

3256(x+3) 3 \le 256(x + 3)

Divide by 256 to isolate x+3 x+3 :

3256x+3 \frac{3}{256} \le x + 3

Subtract 3 from both sides to solve for x x :

x32563 x \ge \frac{3}{256} - 3

Given the problem's constraints about the positivity of the logarithm's argument, ensure x>3 x > -3 . Our derived inequality starts from x32563 x \ge \frac{3}{256} - 3 , which satisfies this, thus correctly addressing the domain assumptions.

In conclusion, the solution to the inequality is:

x32563 x \ge \frac{3}{256} - 3

Answer

x32563 x\ge\frac{3}{256}-3

Exercise #3

x=? x=\text{?}

log13(2x2+3)log132log137log13x2 \log_{13}(2x^2+3)-\log_{13}2\le\log_{13}7-\log_{13}x^2

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Simplify the logarithmic expressions using logbAlogbB=logb(AB)\log_b A - \log_b B = \log_b \left(\frac{A}{B}\right).
  • Step 2: Compare the simplified expressions' arguments.
  • Step 3: Solve the algebraic inequality involving the arguments.

Now, let's work through each step:

Step 1: Use the property log13Alog13B=log13(AB)\log_{13} A - \log_{13} B = \log_{13}\left(\frac{A}{B}\right) to simplify:

log13(2x2+3)log132=log13(2x2+32)\log_{13}(2x^2+3) - \log_{13}2 = \log_{13}\left(\frac{2x^2+3}{2}\right)

log137log13x2=log13(7x2)\log_{13}7 - \log_{13}x^2 = \log_{13}\left(\frac{7}{x^2}\right)

Step 2: This gives the inequality:

log13(2x2+32)log13(7x2)\log_{13}\left(\frac{2x^2+3}{2}\right) \le \log_{13}\left(\frac{7}{x^2}\right)

Since the logarithm function is monotonically increasing, we can drop the logs and solve:

2x2+327x2\frac{2x^2+3}{2} \le \frac{7}{x^2}

Multiplying through by 2x22x^2, to eliminate fractions, ensures none of the values of xx is zero, which would cause division by zero:

(2x2+3)x214(2x^2 + 3)x^2 \le 14

Expanding gives a quadratic inequality:

2x4+3x21402x^4 + 3x^2 - 14 \le 0

Step 3: Substitute u=x2u = x^2 to transform into quadratic form:

2u2+3u1402u^2 + 3u - 14 \le 0

Find the critical points by solving the equation 2u2+3u14=02u^2 + 3u - 14 = 0:

u=3±3242(14)22u = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-14)}}{2 \cdot 2}

u=3±9+1124u = \frac{-3 \pm \sqrt{9 + 112}}{4}

u=3±1214u = \frac{-3 \pm \sqrt{121}}{4}

u=3±114u = \frac{-3 \pm 11}{4}

This gives the roots u=2u = 2 and u=72u = -\frac{7}{2}. Only non-negative values for uu make sense since u=x2u = x^2, so consider:

x2=u2x^2 = u \le 2

Thus, 2x2-\sqrt{2} \le x \le \sqrt{2}.

Therefore, the solution to the problem is 2x2-\sqrt{2} \le x \le \sqrt{2}.

Answer

2x2 -\sqrt{2}\le x\le\sqrt{2}