Calculate the value of the following expression:
Calculate the value of the following expression:
\( \ln4\times(\log_7x^7-\log_7x^4-\log_7x^3+\log_2y^4-\log_2y^3-\log_2y) \)
\( x=\text{?} \)
\( \log_{\frac{1}{2}}5-\log_{\frac{1}{2}}4\le\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}3 \)
\( \log_23-\log_2(x+3)\le8 \)
Find X
\( \ln8x\times\log_7e^2=2(\log_78+\log_7x^2-\log_7x) \)
Solve for X:
\( \ln x+\ln(x+1)-\ln2=3 \)
Calculate the value of the following expression:
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: Simplify the logarithmic expression. We'll simplify the parts involving first, then those involving .
For the terms with :
- Convert terms using the power rule: , , and .
- The expression becomes .
- Simple arithmetic yields , which simplifies to .
For the terms with :
- Similarly, terms use the power rule: , , and .
- The expression is .
- Simple arithmetic gives , which also simplifies to .
Step 2: Substitute these back into the original expression:
Original expression:
.
Therefore, the value of the expression is .
To solve the inequality involving logarithms with base , we will perform the following steps:
Let's go through the steps:
Step 1: Simplify both sides using the logarithm subtraction rule:
Left side:
Right side:
This gives us the inequality:
Step 2: Since is less than 1, the inequality sign flips when we remove the logarithms.
This gives:
Multiplying both sides by 3 to solve for :
Thus, , which simplifies to .
Since we assumed , the final solution is:
0 < x\le3.75
To solve this problem, we'll apply the properties of logarithms and inequality manipulation.
Initially, consider the given inequality:
Using the quotient rule of logarithms, combine the logs:
The inequality can be rewritten by converting the logarithm to an exponential form:
Since , substitute to get:
To remove the fraction, multiply both sides by , assuming to maintain the inequality direction:
Divide by 256 to isolate :
Subtract 3 from both sides to solve for :
Given the problem's constraints about the positivity of the logarithm's argument, ensure . Our derived inequality starts from , which satisfies this, thus correctly addressing the domain assumptions.
In conclusion, the solution to the inequality is:
Find X
To solve the problem, we proceed as follows:
Given the equation:
Step 1: Express using the change of base formula:
Step 2: Substitute into the original equation:
Step 3: Simplify using :
Step 4: Cancel and simplify:
Step 5: Cancel 2 on both sides:
Step 6: Use the properties of logarithms:
Step 7: Simplify :
Step 8: Use properties :
Step 9: This equality is true for all x > 0, considering domain restrictions:
\text{For } x > 0
Thus, the solution is valid for all such that x > 0
Therefore, the correct solution is, For all \mathbf{x > 0}.
For all x>0
Solve for X:
The equation to solve is .
Step 1: Combine the logarithms using the product and quotient rules:
Step 2: Eliminate the logarithm by exponentiating both sides:
Step 3: Solve for by clearing the fraction:
Step 4: Expand and set up a quadratic equation:
Step 5: Use the quadratic formula , where , , and :
Step 6: Simplify under the square root:
Step 7: Ensure . Given will be positive, is the valid solution.
Therefore, the solution to the problem is .
\( \log_49x+\log_4(x+4)-\log_43=\ln2e+\ln\frac{1}{2e} \)
Find X
\( \log_5x+\log_5(x+2)+\log_25-\log_22.5=\log_37\times\log_79 \)
\( (2\log_32+\log_3x)\log_23-\log_2x=3x-7 \)
\( x=\text{?} \)
Given 0<a , find X:
\( \log_{2a}e^7(\ln a+\ln4a)=\log_4x-\log_4x^2+\log_4\frac{1}{x+1} \)
\( \log_59(\log_34x+\log_3(4x+1))=2(\log_54a^3-\log_52a) \)
Given a>0 , find X and express by a
Find X
To solve this logarithmic equation, we will simplify both sides using logarithm properties.
Step 1: Combine the logarithms on the left side.
The left side is . Using the properties of logarithms, we can combine these logs:
This simplifies to:
Step 2: Simplify the right side.
The right side is . Using properties of natural logarithms, combine as follows:
Step 3: Equating both sides, we have:
Step 4: Convert the logarithmic equation to an exponential equation. Since the logarithmic expression equals zero, it signifies:
Step 5: Solve the equation :
Combine and expand the terms:
Step 6: Solve the quadratic equation using the quadratic formula , where , , and :
Calculate:
Thus, the solution is:
This matches the correct choice.
Therefore, the solution to the problem is .
To solve this problem, we will follow these steps:
Now, let's proceed:
Step 1: Simplify the left-hand side:
We can combine the logs as follows:
The constants are simplified as:
Thus, the entire left-hand side becomes:
Step 2: Simplify the right-hand side:
can be written using the change of base formula:
and . Multiplying these, we have:
Step 3: Equate and solve:
Equate the simplified versions:
So, subtracting 1 from both sides:
Taking antilogarithm, we find:
Rearrange to form a quadratic equation:
Step 4: Solve the quadratic equation:
Use the quadratic formula, where , , :
The valid answer must ensure , so .
Therefore, the solution to the problem is .
Let's solve the given equation step by step:
We start with:
Firstly, use the change of base formula to convert to base 3:
Substitute this expression into the original equation:
Simplify the first term:
Thus, the equation becomes:
Convert to base 3 using change of base:
Substitute back into the equation:
The middle terms cancel out, simplifying to:
2 = 3x - 7
Solving for :
Add 7 to both sides:
Divide by 3:
Thus, the solution to the problem is .
Given 0<a , find X:
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: Simplify the left side of the equation.
Given: .
Combine the logarithms: .
Thus, .
So, .
This simplifies to .
Therefore, the left side is: .
Step 2: Simplify the right side of the equation.
Given: .
Combining using the quotient and power rules: .
Further simplify: .
Step 3: Set the two sides equal and solve for .
We have: .
Rewriting with change of base: .
Substitute known values and solve: .
Framing: Solve .
The solution for is found by applying the quadratic formula:
Therefore, the solution to the problem is .
Given a>0 , find X and express by a
The given problem requires solving the logarithmic equation . We need to find in terms of .
**Step 1:** Simplifying the left side using the product rule:
**Step 2:** The equation becomes . To simplify, recognize .
**Step 3:** Now simplify the right-hand side:
**Step 4:** Equate both sides:
**Step 5:** Exponentiate and solve for :
Thus, the solution to the problem, and hence the expression for in terms of , is:
.
\( \log_x16\times\frac{\ln7-\ln x}{\ln4}-\log_x49= \)
\( \log_ax\log_by\log_c2=(\log_ay^3-\log_ay^2)(\log_b\frac{1}{2}+\log_b2^2)\log_c(x^2+1) \)
No solution