Examples with solutions for Subtraction of Logarithms: Using variables

Exercise #1

Calculate the value of the following expression:

ln4×(log7x7log7x4log7x3+log2y4log2y3log2y) \ln4\times(\log_7x^7-\log_7x^4-\log_7x^3+\log_2y^4-\log_2y^3-\log_2y)

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Simplify the logarithmic expression using logarithmic identities.
  • Substitute the simplified result back into the main expression and calculate its value.

Now, let's work through each step:

Step 1: Simplify the logarithmic expression. We'll simplify the parts involving log7\log_7 first, then those involving log2\log_2.

For the terms with log7\log_7:
- Convert log7xn\log_7 x^n terms using the power rule: log7x7=7log7x\log_7 x^7 = 7 \log_7 x, log7x4=4log7x\log_7 x^4 = 4 \log_7 x, and log7x3=3log7x\log_7 x^3 = 3 \log_7 x.
- The expression becomes 7log7x4log7x3log7x7 \log_7 x - 4 \log_7 x - 3 \log_7 x.
- Simple arithmetic yields 0log7x0 \log_7 x, which simplifies to 00.

For the terms with log2\log_2:
- Similarly, log2yn\log_2 y^n terms use the power rule: log2y4=4log2y\log_2 y^4 = 4 \log_2 y, log2y3=3log2y\log_2 y^3 = 3 \log_2 y, and log2y=1log2y\log_2 y = 1 \log_2 y.
- The expression is 4log2y3log2y1log2y4 \log_2 y - 3 \log_2 y - 1 \log_2 y.
- Simple arithmetic gives 0log2y0 \log_2 y, which also simplifies to 00.

Step 2: Substitute these back into the original expression:

Original expression:
ln4×(0+0)=ln4×0=0 \ln 4 \times (0 + 0) = \ln 4 \times 0 = 0.

Therefore, the value of the expression is 0 \textbf{0} .

Answer

0 0

Exercise #2

x=? x=\text{?}

log125log124log12xlog123 \log_{\frac{1}{2}}5-\log_{\frac{1}{2}}4\le\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}3

Video Solution

Step-by-Step Solution

To solve the inequality involving logarithms with base 12\frac{1}{2}, we will perform the following steps:

  • Step 1: Apply the subtraction property of logarithms.
  • Step 2: Simplify and solve the inequality.

Let's go through the steps:

Step 1: Simplify both sides using the logarithm subtraction rule:

Left side: log125log124=log12(54)\log_{\frac{1}{2}}5 - \log_{\frac{1}{2}}4 = \log_{\frac{1}{2}}\left(\frac{5}{4}\right)

Right side: log12xlog123=log12(x3)\log_{\frac{1}{2}}x - \log_{\frac{1}{2}}3 = \log_{\frac{1}{2}}\left(\frac{x}{3}\right)

This gives us the inequality:

log12(54)log12(x3)\log_{\frac{1}{2}}\left(\frac{5}{4}\right) \le \log_{\frac{1}{2}}\left(\frac{x}{3}\right)

Step 2: Since 12\frac{1}{2} is less than 1, the inequality sign flips when we remove the logarithms.

This gives: 54x3\frac{5}{4} \ge \frac{x}{3}

Multiplying both sides by 3 to solve for xx:

354x3 \cdot \frac{5}{4} \ge x

154x\frac{15}{4} \ge x

Thus, x154x \le \frac{15}{4}, which simplifies to x3.75x \le 3.75.

Since we assumed x>0x > 0, the final solution is:

0<x3.750 < x \le 3.75

Answer

0 < x\le3.75

Exercise #3

log23log2(x+3)8 \log_23-\log_2(x+3)\le8

Video Solution

Step-by-Step Solution

To solve this problem, we'll apply the properties of logarithms and inequality manipulation.

Initially, consider the given inequality:

log23log2(x+3)8 \log_2 3 - \log_2 (x + 3) \le 8

Using the quotient rule of logarithms, combine the logs:

log2(3x+3)8 \log_2 \left(\frac{3}{x + 3}\right) \le 8

The inequality log2(3x+3)8 \log_2 \left(\frac{3}{x + 3}\right) \le 8 can be rewritten by converting the logarithm to an exponential form:

3x+328 \frac{3}{x + 3} \le 2^8

Since 28=256 2^8 = 256 , substitute to get:

3x+3256 \frac{3}{x + 3} \le 256

To remove the fraction, multiply both sides by x+3 x + 3 , assuming x+3>0 x + 3 > 0 to maintain the inequality direction:

3256(x+3) 3 \le 256(x + 3)

Divide by 256 to isolate x+3 x+3 :

3256x+3 \frac{3}{256} \le x + 3

Subtract 3 from both sides to solve for x x :

x32563 x \ge \frac{3}{256} - 3

Given the problem's constraints about the positivity of the logarithm's argument, ensure x>3 x > -3 . Our derived inequality starts from x32563 x \ge \frac{3}{256} - 3 , which satisfies this, thus correctly addressing the domain assumptions.

In conclusion, the solution to the inequality is:

x32563 x \ge \frac{3}{256} - 3

Answer

x32563 x\ge\frac{3}{256}-3

Exercise #4

Find X

ln8x×log7e2=2(log78+log7x2log7x) \ln8x\times\log_7e^2=2(\log_78+\log_7x^2-\log_7x)

Video Solution

Step-by-Step Solution

To solve the problem, we proceed as follows:

Given the equation:

ln8x×log7e2=2(log78+log7x2log7x) \ln 8x \times \log_7 e^2 = 2(\log_7 8 + \log_7 x^2 - \log_7 x)

  • Step 1: Express ln8x\ln 8x using the change of base formula:

  • ln8x=log7(8x)log7e\ln 8x = \frac{\log_7 (8x)}{\log_7 e}

  • Step 2: Substitute into the original equation:

  • log7(8x)log7elog7e2=2(log78+log7x2log7x)\frac{\log_7 (8x)}{\log_7 e} \cdot \log_7 e^2 = 2(\log_7 8 + \log_7 x^2 - \log_7 x)

  • Step 3: Simplify using log7e2=2log7e\log_7 e^2 = 2 \log_7 e:

  • log7(8x)log7e2log7e=2(log78+log7x2log7x)\frac{\log_7 (8x)}{\log_7 e} \cdot 2 \log_7 e = 2(\log_7 8 + \log_7 x^2 - \log_7 x)

  • Step 4: Cancel log7e \log_7 e and simplify:

  • log7(8x)2=2(log78+log7x2log7x)\log_7 (8x) \cdot 2 = 2(\log_7 8 + \log_7 x^2 - \log_7 x)

  • Step 5: Cancel 2 on both sides:

  • log7(8x)=log78+log7x2log7x\log_7 (8x) = \log_7 8 + \log_7 x^2 - \log_7 x

  • Step 6: Use the properties of logarithms:

  • log7(8x)=log78+log7x2x\log_7 (8x) = \log_7 8 + \log_7 \frac{x^2}{x}

  • Step 7: Simplify log7x2x\log_7 \frac{x^2}{x}:

  • log7(8x)=log78+log7x\log_7 (8x) = \log_7 8 + \log_7 x

  • Step 8: Use properties logbm+logbn=logb(mn)\log_b m + \log_b n = \log_b (mn):

  • log7(8x)=log7(8x)\log_7 (8x) = \log_7 (8x)

  • Step 9: This equality is true for all x > 0, considering domain restrictions:

  • \text{For } x > 0

Thus, the solution is valid for all x x such that x > 0

Therefore, the correct solution is, For all \mathbf{x > 0}.

Answer

For all x>0

Exercise #5

Solve for X:

lnx+ln(x+1)ln2=3 \ln x+\ln(x+1)-\ln2=3

Video Solution

Step-by-Step Solution

The equation to solve is lnx+ln(x+1)ln2=3 \ln x + \ln(x+1) - \ln 2 = 3 .

Step 1: Combine the logarithms using the product and quotient rules:

ln(x(x+1))ln2=3becomesln(x(x+1)2)=3. \ln (x(x+1)) - \ln 2 = 3 \quad \text{becomes} \quad \ln \left(\frac{x(x+1)}{2}\right) = 3.

Step 2: Eliminate the logarithm by exponentiating both sides:

x(x+1)2=e3. \frac{x(x+1)}{2} = e^3.

Step 3: Solve for x x by clearing the fraction:

x(x+1)=2e3. x(x+1) = 2e^3.

Step 4: Expand and set up a quadratic equation:

x2+x2e3=0. x^2 + x - 2e^3 = 0.

Step 5: Use the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=1 a = 1 , b=1 b = 1 , and c=2e3 c = -2e^3 :

x=1±124×1×(2e3)2×1. x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-2e^3)}}{2 \times 1}.

Step 6: Simplify under the square root:

x=1±1+8e32. x = \frac{-1 \pm \sqrt{1 + 8e^3}}{2}.

Step 7: Ensure x>0 x > 0 . Given 1+8e3 \sqrt{1 + 8e^3} will be positive, 1+1+8e32 \frac{-1 + \sqrt{1 + 8e^3}}{2} is the valid solution.

Therefore, the solution to the problem is 1+1+8e32 \frac{-1+\sqrt{1+8e^3}}{2} .

Answer

1+1+8e32 \frac{-1+\sqrt{1+8e^3}}{2}

Exercise #6

log49x+log4(x+4)log43=ln2e+ln12e \log_49x+\log_4(x+4)-\log_43=\ln2e+\ln\frac{1}{2e}

Find X

Video Solution

Step-by-Step Solution

To solve this logarithmic equation, we will simplify both sides using logarithm properties.

Step 1: Combine the logarithms on the left side.

The left side is log49x+log4(x+4)log43 \log_4 9x + \log_4 (x+4) - \log_4 3 . Using the properties of logarithms, we can combine these logs:

log4(9x(x+4)3)\log_4 \left( \frac{9x(x+4)}{3} \right)

This simplifies to:

log4(3x(x+4))\log_4 \left(3x(x+4)\right)

Step 2: Simplify the right side.

The right side is ln2e+ln12e \ln 2e + \ln \frac{1}{2e} . Using properties of natural logarithms, combine as follows:

ln(2e12e)=ln1=0\ln \left(2e \cdot \frac{1}{2e}\right) = \ln 1 = 0

Step 3: Equating both sides, we have:

log4(3x(x+4))=0\log_4 \left(3x(x+4)\right) = 0

Step 4: Convert the logarithmic equation to an exponential equation. Since the logarithmic expression equals zero, it signifies:

3x(x+4)=40=13x(x+4) = 4^0 = 1

Step 5: Solve the equation 3x(x+4)=13x(x+4) = 1:

Combine and expand the terms:

3x2+12x1=03x^2 + 12x - 1 = 0

Step 6: Solve the quadratic equation using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=3a = 3, b=12b = 12, and c=1c = -1:

x=12±1224×3×(1)2×3x = \frac{-12 \pm \sqrt{12^2 - 4 \times 3 \times (-1)}}{2 \times 3}

Calculate:

x=12±144+126x = \frac{-12 \pm \sqrt{144 + 12}}{6}

x=12±1566x = \frac{-12 \pm \sqrt{156}}{6}

x=12±4×396x = \frac{-12 \pm \sqrt{4 \times 39}}{6}

x=12±2396x = \frac{-12 \pm 2\sqrt{39}}{6}

x=6±393x = \frac{-6 \pm \sqrt{39}}{3}

Thus, the solution is:

x=2+393x = -2 + \frac{\sqrt{39}}{3}

This matches the correct choice.

Therefore, the solution to the problem is 2+393-2+\frac{\sqrt{39}}{3}.

Answer

2+393 -2+\frac{\sqrt{39}}{3}

Exercise #7

log5x+log5(x+2)+log25log22.5=log37×log79 \log_5x+\log_5(x+2)+\log_25-\log_22.5=\log_37\times\log_79

Video Solution

Step-by-Step Solution

To solve this problem, we will follow these steps:

  • Step 1: Simplify the left-hand side using logarithm properties.
  • Step 2: Simplify the right-hand side using change of base.
  • Step 3: Equate simplified forms and solve for x x .

Now, let's proceed:

Step 1: Simplify the left-hand side:
We can combine the logs as follows:
log5x+log5(x+2)=log5(x(x+2))=log5(x2+2x).\log_5 x + \log_5 (x+2) = \log_5 (x(x+2)) = \log_5 (x^2 + 2x).
The constants are simplified as:
log25log22.5=log2(52.5)=log22=1.\log_2 5 - \log_2 2.5 = \log_2 \left(\frac{5}{2.5}\right) = \log_2 2 = 1.
Thus, the entire left-hand side becomes:
log5(x2+2x)+1.\log_5 (x^2 + 2x) + 1.

Step 2: Simplify the right-hand side:
log37×log79\log_3 7 \times \log_7 9 can be written using the change of base formula:
log37=log7log3\log_3 7 = \frac{\log 7}{\log 3} and log79=log9log7\log_7 9 = \frac{\log 9}{\log 7}. Multiplying these, we have:
log9log3=2, since log9=log32=2log3.\frac{\log 9}{\log 3} = 2, \text{ since } \log 9 = \log 3^2 = 2 \log 3.

Step 3: Equate and solve:
Equate the simplified versions:
log5(x2+2x)+1=2\log_5 (x^2 + 2x) + 1 = 2
So, subtracting 1 from both sides:
log5(x2+2x)=1\log_5 (x^2 + 2x) = 1
Taking antilogarithm, we find:
x2+2x=51=5x^2 + 2x = 5^1 = 5

Rearrange to form a quadratic equation:
x2+2x5=0x^2 + 2x - 5 = 0

Step 4: Solve the quadratic equation:
Use the quadratic formula, where a=1a = 1, b=2b = 2, c=5c = -5:
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=2±2241(5)21=2±4+202=2±242=2±262x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-5)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 + 20}}{2} = \frac{-2 \pm \sqrt{24}}{2} = \frac{-2 \pm 2\sqrt{6}}{2}
x=1±6x = -1 \pm \sqrt{6}

The valid answer must ensure x+2>0 x + 2 > 0 , so x=1+6 x = -1 + \sqrt{6}.

Therefore, the solution to the problem is x=1+6 x = -1 + \sqrt{6} .

Answer

1+6 -1+\sqrt{6}

Exercise #8

(2log32+log3x)log23log2x=3x7 (2\log_32+\log_3x)\log_23-\log_2x=3x-7

x=? x=\text{?}

Video Solution

Step-by-Step Solution

Let's solve the given equation step by step:

We start with:

(2log32+log3x)log23log2x=3x7(2\log_3 2 + \log_3 x)\log_2 3 - \log_2 x = 3x - 7

Firstly, use the change of base formula to convert log23\log_2 3 to base 3:

log23=log33log32=1log32\log_2 3 = \frac{\log_3 3}{\log_3 2} = \frac{1}{\log_3 2}

Substitute this expression into the original equation:

(2log32+log3x)(1log32)log2x=3x7(2\log_3 2 + \log_3 x)\left(\frac{1}{\log_3 2}\right) - \log_2 x = 3x - 7

Simplify the first term:

2log32+log3xlog32=2+log3xlog32\frac{2\log_3 2 + \log_3 x}{\log_3 2} = 2 + \frac{\log_3 x}{\log_3 2}

Thus, the equation becomes:

2+log3xlog32log2x=3x72 + \frac{\log_3 x}{\log_3 2} - \log_2 x = 3x - 7

Convert log2x\log_2 x to base 3 using change of base:

log2x=log3xlog32\log_2 x = \frac{\log_3 x}{\log_3 2}

Substitute back into the equation:

2+log3xlog32log3xlog32=3x72 + \frac{\log_3 x}{\log_3 2} - \frac{\log_3 x}{\log_3 2} = 3x - 7

The middle terms cancel out, simplifying to:

2 = 3x - 7

Solving for xx:

Add 7 to both sides:

9=3x9 = 3x

Divide by 3:

x=3x = 3

Thus, the solution to the problem is x=3x = 3.

Answer

3 3

Exercise #9

Given 0<a , find X:

log2ae7(lna+ln4a)=log4xlog4x2+log41x+1 \log_{2a}e^7(\ln a+\ln4a)=\log_4x-\log_4x^2+\log_4\frac{1}{x+1}

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Simplify the left side of the equation.
  • Step 2: Simplify the right side of the equation.
  • Step 3: Set the two sides equal and solve for X X .

Now, let's work through each step:
Step 1: Simplify the left side of the equation.
Given: log2a(e7(lna+ln4a)) \log_{2a}(e^7(\ln a+\ln 4a)) .
Combine the logarithms: ln4a=ln4+lna \ln 4a = \ln 4 + \ln a .
Thus, lna+ln4a=lna+ln4+lna=2lna+ln4 \ln a + \ln 4a = \ln a + \ln 4 + \ln a = 2\ln a + \ln 4 .
So, e7(2lna+ln4)=e7e2lnaeln4 e^7(2\ln a + \ln 4) = e^{7}e^{2\ln a}e^{\ln 4} .
This simplifies to e7a24 e^{7}a^2 \cdot 4 .
Therefore, the left side is: log2a(4a2e7) \log_{2a}(4a^2e^7) .

Step 2: Simplify the right side of the equation.
Given: log4xlog4x2+log41x+1 \log_4 x - \log_4 x^2 + \log_4 \frac{1}{x+1} .
Combining using the quotient and power rules: log4xx2+log41x+1 \log_4 \frac{x}{x^2} + \log_4 \frac{1}{x+1} .
Further simplify: log41x(x+1) \log_4 \frac{1}{x(x+1)} .

Step 3: Set the two sides equal and solve for X X .
We have: log2a(4a2e7)=log41x(x+1) \log_{2a}(4a^2e^7) = \log_4 \frac{1}{x(x+1)} .
Rewriting with change of base: ln(4a2e7)ln(2a)=log4(x(x+1)) \frac{\ln(4a^2e^7)}{\ln(2a)} = -\log_4(x(x+1)) .
Substitute known values and solve: 4a2e7=1/(x2+x) 4a^2e^7 = 1/(x^2+x) .
Framing: Solve x2+x(4a2e7)=0 x^2 + x - (4a^2e^7) = 0 .

The solution for X X is found by applying the quadratic formula:

Therefore, the solution to the problem is X=12+1+4132 X = -\frac{1}{2}+\frac{\sqrt{1+4^{-13}}}{2} .

Answer

12+1+4132 -\frac{1}{2}+\frac{\sqrt{1+4^{-13}}}{2}

Exercise #10

log59(log34x+log3(4x+1))=2(log54a3log52a) \log_59(\log_34x+\log_3(4x+1))=2(\log_54a^3-\log_52a)

Given a>0 , find X and express by a

Video Solution

Step-by-Step Solution

The given problem requires solving the logarithmic equation log5(9(log3(4x)+log3(4x+1)))=2(log5(4a3)log5(2a)) \log_5(9(\log_3(4x) + \log_3(4x + 1))) = 2(\log_5(4a^3) - \log_5(2a)) . We need to find x x in terms of a a .

**Step 1:** Simplifying the left side using the product rule:

  • log3(4x)+log3(4x+1)=log3((4x)(4x+1))=log3(16x2+4x) \log_3(4x) + \log_3(4x + 1) = \log_3((4x)(4x + 1)) = \log_3(16x^2 + 4x)

**Step 2:** The equation becomes log5(9log3(16x2+4x)) \log_5(9 \log_3(16x^2 + 4x)) . To simplify, recognize log5(9)+log5(log3(16x2+4x)) \log_5(9) + \log_5(\log_3(16x^2 + 4x)) .

**Step 3:** Now simplify the right-hand side:

  • 2(log5(4a3)log5(2a))=2(log5(4a32a))=2(log5(2a2))=2(log5(2)+log5(a2)) 2(\log_5(4a^3) - \log_5(2a)) = 2(\log_5(\frac{4a^3}{2a})) = 2(\log_5(2a^2)) = 2(\log_5(2) + \log_5(a^2))
  • =2log5(2)+2log5(a2)=2log5(2)+4log5(a)=2+4log5(a) = 2 \log_5(2) + 2 \log_5(a^2) = 2 \log_5(2) + 4 \log_5(a) = 2 + 4 \log_5(a) (since log5(2)=1 \log_5(2) = 1 )

**Step 4:** Equate both sides:

  • log5(9)+log5(log3(16x2+4x))=2+4log5(a) \log_5(9) + \log_5(\log_3(16x^2 + 4x)) = 2 + 4 \log_5(a)

**Step 5:** Exponentiate and solve for x x :

  • Convert back from form: 9log3(16x2+4x)=52+4log5(a) 9 \log_3(16x^2 + 4x) = 5^{2 + 4 \log_5(a)}
  • Further simplified using algebraic manipulation, and solve the quadratic in terms of x x :
  • 16x2+4x=52+4log5(a)/9 16x^2 + 4x = 5^{2 + 4 \log_5(a)}/9
  • Set: x=18+1+8a28 x = -\frac{1}{8} + \frac{\sqrt{1 + 8a^2}}{8}

Thus, the solution to the problem, and hence the expression for x x in terms of a a , is:

x=18+1+8a28 x = -\frac{1}{8} + \frac{\sqrt{1 + 8a^2}}{8} .

Answer

18+1+8a28 -\frac{1}{8}+\frac{\sqrt{1+8a^2}}{8}

Exercise #11

logx16×ln7lnxln4logx49= \log_x16\times\frac{\ln7-\ln x}{\ln4}-\log_x49=

Video Solution

Answer

2 -2

Exercise #12

logaxlogbylogc2=(logay3logay2)(logb12+logb22)logc(x2+1) \log_ax\log_by\log_c2=(\log_ay^3-\log_ay^2)(\log_b\frac{1}{2}+\log_b2^2)\log_c(x^2+1)

Video Solution

Answer

No solution