Subtraction of Logarithms

The definition of a logarithm is:
logax=blog_a⁡x=b
X=abX=a^b

Where:
aa is the base of the exponent
XX is what appears inside the log, can also appear in parentheses
bb is the exponent we raise the log base to in order to obtain the number that appears inside of the log.


Subtraction of logarithms with identical base is based on the following rule:


logaxlogay=logaxylog_a⁡x-log_a⁡y=log_a⁡\frac{x}{y}

Visual explanation of logarithmic rules showing log(x·y) equals log(x) plus log(y), and log(x/y) equals log(x) minus log(y), with arrows connecting each part for clarity.


Subtraction of logarithms with different bases is performed by changing the base using the following rule:

logaX=logbase we want to change toXlogbase we want to change toalog_aX=\frac{log_{base~we~want~to~change~to}X}{log_{base~we~want~to~change~to}a}

Logarithmic change of base formula illustrated: log base b of a equals log base x of a divided by log base x of b, with arrows showing transformation from original form.

Suggested Topics to Practice in Advance

  1. Addition of Logarithms

Practice Subtraction of Logarithms

Examples with solutions for Subtraction of Logarithms

Exercise #1

log53log52= \log_53-\log_52=

Video Solution

Step-by-Step Solution

To solve the problem, we employ the property of logarithms for subtraction:

  • Step 1: Recognize the expression log53log52 \log_5 3 - \log_5 2 .
  • Step 2: Apply the logarithmic property for subtraction, logbalogbc=logb(ac) \log_b a - \log_b c = \log_b \left( \frac{a}{c} \right) .
  • Step 3: Substitute into the property: log53log52=log5(32) \log_5 3 - \log_5 2 = \log_5 \left( \frac{3}{2} \right) .

By applying the property, we simplify the expression to log532 \log_5 \frac{3}{2} . This is equivalent to log51.5 \log_5 1.5 . Therefore:

Therefore, the result of the expression is log51.5 \log_5 1.5 .

Answer

log51.5 \log_51.5

Exercise #2

log29log23= \log_29-\log_23=

Video Solution

Step-by-Step Solution

To solve the problem of evaluating log29log23\log_2 9 - \log_2 3, we apply the properties of logarithms as follows:

  • Step 1: Recognize that the expression uses a subtraction of logarithms with the same base: log29log23\log_2 9 - \log_2 3.
  • Step 2: Use the logarithmic subtraction rule: logbAlogbB=logb(AB)\log_b A - \log_b B = \log_b \left(\frac{A}{B}\right).
  • Step 3: Simplify using this rule: log29log23=log2(93)\log_2 9 - \log_2 3 = \log_2 \left(\frac{9}{3}\right).
  • Step 4: Perform the division: 93=3\frac{9}{3} = 3.
  • Step 5: Therefore, log2(93)=log23\log_2 \left(\frac{9}{3}\right) = \log_2 3.

Thus, the simplified and evaluated result is log23 \log_2 3 .

Answer

log23 \log_23

Exercise #3

log75log72= \log_75-\log_72=

Video Solution

Step-by-Step Solution

To solve the problem, let's use the rules of logarithms:

  • Step 1: Recognize that we are dealing with the subtraction of logarithms sharing the same base, which calls for the identity logbMlogbN=logb(MN)\log_b M - \log_b N = \log_b \left(\frac{M}{N}\right).
  • Step 2: Apply this identity to the expression log75log72\log_7 5 - \log_7 2.
  • Step 3: Realize that this can thus be expressed as a single logarithm: log7(52)\log_7 \left(\frac{5}{2}\right).
  • Step 4: Simplify the fraction, yielding log72.5\log_7 2.5.

Therefore, the simplification results in the expression: log72.5\log_7 2.5.

This matches the correct answer from the given choices.

Answer

log72.5 \log_72.5

Exercise #4

12log39log31.5= \frac{1}{2}\log_39-\log_31.5=

Video Solution

Step-by-Step Solution

To solve the problem 12log39log31.5 \frac{1}{2}\log_39-\log_31.5 , we need to apply the rules of logarithms:

  • **Step 1: Simplify with the power rule**
    Using the power rule 12log39=log391/2 \frac{1}{2}\log_39 = \log_39^{1/2} . Since 9=329 = 3^2, we have 91/2=321/2=319^{1/2} = 3^{2 \cdot 1/2} = 3^1. Thus, 12log39=log33=1\frac{1}{2}\log_39 = \log_3 3 = 1.
  • **Step 2: Apply the subtraction rule**
    Now, the expression becomes 1log31.51 - \log_3 1.5. Using the subtraction rule: 1log31.5=log33log31.5=log3(31.5)1 - \log_3 1.5 = \log_3 3 - \log_3 1.5 = \log_3 \left(\frac{3}{1.5}\right).
  • **Step 3: Simplify the fraction**
    Calculate 31.5\frac{3}{1.5}: it simplifies to 2 because 3÷1.5=23 \div 1.5 = 2.

Thus, the simplified expression is log32\log_3 2.

Using the provided answer choices, the correct answer matches choice log32 \log_3 2 , which corresponds to choice 2.

Therefore, the solution to the problem is log32 \log_3 2 .

Answer

log32 \log_32

Exercise #5

14log61296log612log63= \frac{1}{4}\cdot\log_61296\cdot\log_6\frac{1}{2}-\log_63=

Video Solution

Step-by-Step Solution

We break it down into parts

log61296=x \log_61296=x

6x=1296 6^x=1296

x=4 x=4

144log612log63= \frac{1}{4}\cdot4\cdot\log_6\frac{1}{2}-\log_63=

log612log63= \log_6\frac{1}{2}-\log_63=

log6(12:3)=log616 \log_6\left(\frac{1}{2}:3\right)=\log_6\frac{1}{6}

log616=x \log_6\frac{1}{6}=x

6x=16 6^x=\frac{1}{6}

x=1 x=-1

Answer

1 -1

Exercise #6

log7x4log72x2=3 \log_7x^4-\log_72x^2=3

?=x

Video Solution

Step-by-Step Solution

logaxlogay=logaxy \log_ax-\log_ay=\log_a\frac{x}{y}

log7x4log72x2= \log_7x^4-\log_72x^2=

log7x42x2=3 \log_7\frac{x^4}{2x^2}=3

73=x22 7^3=\frac{x^2}{2}

We multiply by: 2 2

273=x2 2\cdot7^3=x^2

Extract the root

x=680=714 x=\sqrt{680}=7\sqrt{14}

x=680=714 x=-\sqrt{680}=-7\sqrt{14}

Answer

714  , 714 -7\sqrt{14\text{ }}\text{ , }7\sqrt{14}

Exercise #7

ln(4x+3)ln(x28)=2 \ln(4x+3)-\ln(x^2-8)=2

?=x

Video Solution

Step-by-Step Solution

Let's solve the logarithmic equation step-by-step:

Step 1: Combine the Logarithms
Using the property ln(a)ln(b)=ln(ab) \ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) , we combine the logarithms:

ln(4x+3x28)=2 \ln\left(\frac{4x+3}{x^2-8}\right) = 2

Step 2: Remove the Logarithm by Exponentiation
Exponentiate both sides with base e e to get rid of the natural logarithm:

4x+3x28=e2\frac{4x+3}{x^2-8} = e^2

Step 3: Solve the Resulting Equation
Multiplying both sides by x28 x^2 - 8 to eliminate the fraction:

4x+3=e2(x28) 4x + 3 = e^2(x^2 - 8)

Expanding and rearranging gives us:

e2x24x8e23=0 e^2x^2 - 4x - 8e^2 - 3 = 0

Let's employ the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=e2 a = e^2 , b=4 b = -4 , and c=(8e2+3) c = -(8e^2 + 3) .

Calculate the discriminant:

b24ac=(4)24(e2)((8e2+3)) b^2 - 4ac = (-4)^2 - 4(e^2)(-(8e^2 + 3))

Solving this using numerical approximations (since we have e27.39 e^2 \approx 7.39 ), you get:

x3.18 x \approx 3.18

Conclusion:
The value of x x is approximately 3.18 3.18 , which confirms our choice.

Answer

3.18 3.18

Exercise #8

log4(3x2+8x10)log4(x2x+12.5)=0 \log_4(3x^2+8x-10)-\log_4(-x^2-x+12.5)=0

?=x

Video Solution

Step-by-Step Solution

To solve this problem, we'll apply the following steps:

  • Step 1: Use logarithmic properties to rewrite log4(3x2+8x10)log4(x2x+12.5)=0 \log_4(3x^2+8x-10) - \log_4(-x^2-x+12.5) = 0 as a single logarithm: log4(3x2+8x10x2x+12.5)=0 \log_4 \left( \frac{3x^2 + 8x - 10}{-x^2 - x + 12.5} \right) = 0 .
  • Step 2: Recognize that if log4(3x2+8x10x2x+12.5)=0 \log_4 \left( \frac{3x^2 + 8x - 10}{-x^2 - x + 12.5} \right) = 0 , then 3x2+8x10x2x+12.5=40=1 \frac{3x^2 + 8x - 10}{-x^2 - x + 12.5} = 4^0 = 1 .
  • Step 3: Set up the equation: 3x2+8x10=x2x+12.5 3x^2 + 8x - 10 = -x^2 - x + 12.5 .
  • Step 4: Rearrange the equation to: 3x2+8x10+x2+x12.5=0 3x^2 + 8x - 10 + x^2 + x - 12.5 = 0 .
  • Step 5: Simplify to: 4x2+9x22.5=0 4x^2 + 9x - 22.5 = 0 .
  • Step 6: Use the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=4 a = 4 , b=9 b = 9 , c=22.5 c = -22.5 .
  • Step 7: Calculate: b24ac=924×4×(22.5)=81+360=441 b^2 - 4ac = 9^2 - 4 \times 4 \times (-22.5) = 81 + 360 = 441 .
  • Step 8: Find x x : x=9±4418=9±218 x = \frac{-9 \pm \sqrt{441}}{8} = \frac{-9 \pm 21}{8} .
  • Step 9: Compute the roots: x1=9+218=128=1.5 x_1 = \frac{-9 + 21}{8} = \frac{12}{8} = 1.5 and x2=9218=308=3.75 x_2 = \frac{-9 - 21}{8} = \frac{-30}{8} = -3.75 .
  • Step 10: Verify these solutions satisfy the domain of original logarithmic expressions by substituting back into 3x2+8x10>0 3x^2 + 8x - 10 > 0 and x2x+12.5>0-x^2 - x + 12.5 > 0 .

Therefore, the solutions to the problem are x=3.75,1.5 x = -3.75, 1.5 .

The correct choice from the provided options is: 3.75,1.5 -3.75, 1.5 .

Answer

3.75,1.5 -3.75,1.5

Exercise #9

log4x+log2log9=log24 \log4x+\log2-\log9=\log_24

?=x

Video Solution

Step-by-Step Solution

To solve the equation log4x+log2log9=log24\log 4x + \log 2 - \log 9 = \log_2 4, we will follow these steps:

  • Step 1: Simplify the left side using logarithmic properties
  • Step 2: Convert the right side using change of base
  • Step 3: Equate the simplified expressions and solve for xx

Step 1: Simplify the left side:

The left side log4x+log2log9\log 4x + \log 2 - \log 9 can be combined using the properties of logarithms:

log4x+log2=log(4x2)=log(8x)\log 4x + \log 2 = \log(4x \cdot 2) = \log(8x)

Now, using the subtraction property:

log(8x)log9=log(8x9)\log (8x) - \log 9 = \log \left(\frac{8x}{9}\right)

Step 2: Convert the right side using the change of base formula:

log24=log4log2\log_2 4 = \frac{\log 4}{\log 2}

We recognize that 4=224 = 2^2, so log24=2\log_2 4 = 2.

Step 3: Equate the expressions and solve for xx:

Now equate:

log(8x9)=2\log \left(\frac{8x}{9}\right) = 2

This implies:

8x9=102=100\frac{8x}{9} = 10^2 = 100

Thus, solving for xx:

8x=9008x = 900

x=9008=112.5x = \frac{900}{8} = 112.5

Therefore, the solution to the problem is x=112.5x = 112.5.

Answer

112.5 112.5

Exercise #10

log9e3×(log224log28)(ln8+ln2) \log_9e^3\times(\log_224-\log_28)(\ln8+\ln2)

Video Solution

Step-by-Step Solution

We will solve the problem step by step:

Step 1: Simplify log9e3\log_9 e^3

  • Using the change of base formula, log9e3=lne3ln9\log_9 e^3 = \frac{\ln e^3}{\ln 9}.
  • We know lne3=3lne=3\ln e^3 = 3\ln e = 3, because lne=1\ln e = 1.
  • Thus, log9e3=3ln9=32ln3\log_9 e^3 = \frac{3}{\ln 9} = \frac{3}{2\ln 3}, since ln9=2ln3\ln 9 = 2\ln 3.
  • Therefore, log9e3=32ln3\log_9 e^3 = \frac{3}{2\ln 3}.

Step 2: Simplify log224log28\log_2 24 - \log_2 8

  • Use the logarithm subtraction rule: log224log28=log2(248)=log23\log_2 24 - \log_2 8 = \log_2 \left(\frac{24}{8}\right) = \log_2 3.

Step 3: Simplify ln8+ln2\ln 8 + \ln 2

  • Using the product property of logarithms: ln8+ln2=ln(8×2)=ln16\ln 8 + \ln 2 = \ln(8 \times 2) = \ln 16.
  • Since 16=2416 = 2^4, ln16=4ln2\ln 16 = 4\ln 2.

Step 4: Combine the results

  • We need to check the overall structure: log9e3×log23×4ln2\log_9 e^3 \times \log_2 3 \times 4 \ln 2.
  • Previously calculated: log9e3=32ln3\log_9 e^3 = \frac{3}{2 \ln 3}, log23=ln3ln2\log_2 3 = \frac{\ln 3}{\ln 2}.
  • Therefore, the entire expression becomes:
  • 32ln3×ln3ln2×4ln2=32×4=6\frac{3}{2 \ln 3} \times \frac{\ln 3}{\ln 2} \times 4 \ln 2 = \frac{3}{2} \times 4 = 6.

Therefore, the solution to the problem is 6 6 .

Answer

6 6

Exercise #11

log7x+log(x+1)log7=log2xlogx \log7x+\log(x+1)-\log7=\log2x-\log x

?=x ?=x

Video Solution

Step-by-Step Solution

Defined domain

x>0

x+1>0

x>-1

log7x+log(x+1)log7=log2xlogx \log7x+\log\left(x+1\right)-\log7=\log2x-\log x

log7x(x+1)7=log2xx \log\frac{7x\cdot\left(x+1\right)}{7}=\log\frac{2x}{x}

We reduce by: 7 7 and by X X

x(x+1)=2 x\left(x+1\right)=2

x2+x2=0 x^2+x-2=0

(x+2)(x1)=0 \left(x+2\right)\left(x-1\right)=0

x+2=0 x+2=0

x=2 x=-2

Undefined domain x>0

x1=0 x-1=0

x=1 x=1

Defined domain

Answer

1 1

Exercise #12

log64×log9x=(log6x2log6x)(log92.5+log91.6) \log_64\times\log_9x=(\log_6x^2-\log_6x)(\log_92.5+\log_91.6)

Video Solution

Step-by-Step Solution

To solve this problem, we'll carefully apply logarithmic properties:

  • Step 1: Simplify the left-hand side:
    The left-hand side is given as log64×log9x \log_64 \times \log_9x . We simplify log64 \log_64 :
    log64=log4log6=log(22)log6=2log2log6\log_64 = \frac{\log 4}{\log 6} = \frac{\log(2^2)}{\log 6} = \frac{2\log 2}{\log 6}.
    Therefore, the left-hand side becomes 2log2log6×log9x\frac{2\log 2}{\log 6} \times \log_9x.
  • Step 2: Simplify the right-hand side:
    The right-hand side is (log6x2log6x)(log92.5+log91.6)(\log_6x^2 - \log_6x)(\log_92.5 + \log_91.6).
    First, simplify log6x2log6x=2log6xlog6x=log6x\log_6x^2 - \log_6x = 2\log_6x - \log_6x = \log_6x.
    For the other part, apply the product property: log92.5+log91.6=log9(2.5×1.6)\log_92.5 + \log_91.6 = \log_9(2.5 \times 1.6).
    Calculate 2.5×1.6=4.02.5 \times 1.6 = 4.0, hence log94\log_94.
  • Step 3: Equate and simplify:
    Now equate the simplified expressions: 2log2log6×log9x=log6xlog94\frac{2\log 2}{\log 6} \times \log_9x = \log_6x \cdot \log_94.
    Change all logs to a common base (let's use natural log ln \ln) and solve:
  • Step 4: Apply base conversion:
    log9x=lnxln9\log_9x = \frac{\ln x}{\ln 9}, log6x=lnxln6\log_6x = \frac{\ln x}{\ln 6}, and log94=ln4ln9\log_94 = \frac{\ln 4}{\ln 9}.
  • Step 5: Combine and solve:
    Perform algebraic manipulation and simplification:
    The equation becomes 2ln2ln6ln9lnx=lnxln4ln6ln9\frac{2\ln 2}{\ln 6 \ln 9} \cdot \ln x = \frac{\ln x \cdot \ln 4}{\ln 6 \ln 9}.
    Cancel lnx\ln x (non-zero due to x>0x > 0) and solve for positive xx.
  • Conclude with the solution constraints:
    Given the properties and the domain involved, solution holds for all 0<x0 < x.

Therefore, the correct solution is: For all 0<x0 < x.

Answer

For all 0 < x

Exercise #13

Calculate the value of the following expression:

ln4×(log7x7log7x4log7x3+log2y4log2y3log2y) \ln4\times(\log_7x^7-\log_7x^4-\log_7x^3+\log_2y^4-\log_2y^3-\log_2y)

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Simplify the logarithmic expression using logarithmic identities.
  • Substitute the simplified result back into the main expression and calculate its value.

Now, let's work through each step:

Step 1: Simplify the logarithmic expression. We'll simplify the parts involving log7\log_7 first, then those involving log2\log_2.

For the terms with log7\log_7:
- Convert log7xn\log_7 x^n terms using the power rule: log7x7=7log7x\log_7 x^7 = 7 \log_7 x, log7x4=4log7x\log_7 x^4 = 4 \log_7 x, and log7x3=3log7x\log_7 x^3 = 3 \log_7 x.
- The expression becomes 7log7x4log7x3log7x7 \log_7 x - 4 \log_7 x - 3 \log_7 x.
- Simple arithmetic yields 0log7x0 \log_7 x, which simplifies to 00.

For the terms with log2\log_2:
- Similarly, log2yn\log_2 y^n terms use the power rule: log2y4=4log2y\log_2 y^4 = 4 \log_2 y, log2y3=3log2y\log_2 y^3 = 3 \log_2 y, and log2y=1log2y\log_2 y = 1 \log_2 y.
- The expression is 4log2y3log2y1log2y4 \log_2 y - 3 \log_2 y - 1 \log_2 y.
- Simple arithmetic gives 0log2y0 \log_2 y, which also simplifies to 00.

Step 2: Substitute these back into the original expression:

Original expression:
ln4×(0+0)=ln4×0=0 \ln 4 \times (0 + 0) = \ln 4 \times 0 = 0.

Therefore, the value of the expression is 0 \textbf{0} .

Answer

0 0

Exercise #14

log76log71.53log721log82= \frac{\log_76-\log_71.5}{3\log_72}\cdot\frac{1}{\log_{\sqrt{8}}2}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the expression step-by-step, using algebraic rules for logarithms:

  • Step 1: Simplify the numerator log76log71.53log72 \frac{\log_7 6 - \log_7 1.5}{3 \log_7 2}

First, apply the logarithm quotient rule to the numerator:
log76log71.5=log7(61.5)=log74 \log_7 6 - \log_7 1.5 = \log_7 \left(\frac{6}{1.5}\right) = \log_7 4

  • Step 2: Simplify 3log72 3 \log_7 2 in the denominator.

The denominator is 3×log72 3 \times \log_7 2 .

  • Step 3: Address the next part of the expression: 1log82 \frac{1}{\log_{\sqrt{8}} 2} .

By changing the base, use log82=log8212 \log_{\sqrt{8}} 2 = \frac{\log_{8} 2}{\frac{1}{2}} because 8=81/2 \sqrt{8} = 8^{1/2} . Now, log82=13 \log_8 2 = \frac{1}{3} as 81/3=2 8^{1/3} = 2 . So, log82=log281/2=1/31/2=23 \log_{\sqrt{8}} 2 = \frac{\log_2 8}{1/2} = \frac{1/3}{1/2} = \frac{2}{3} .

Therefore, the reciprocal is 1log82=32 \frac{1}{\log_{\sqrt{8}} 2} = \frac{3}{2} .

  • Step 4: Combine and simplify the expression.

The complete logarithmic expression simplifies as follows:
log743log7232=log7(22)3log7232 \frac{\log_7 4}{3 \log_7 2} \cdot \frac{3}{2} = \frac{\log_7 (2^2)}{3 \log_7 2} \cdot \frac{3}{2}

Using the power rule, log74=2log72 \log_7 4 = 2 \log_7 2 . Plug this back into the expression:
2log723log7232 \frac{2 \log_7 2}{3 \log_7 2} \cdot \frac{3}{2}
The log72 \log_7 2 cancels within the fraction, and we are left with 23×32=1 \frac{2}{3} \times \frac{3}{2} = 1 .

Therefore, the solution to the problem is 1 1 .

Answer

1 1

Exercise #15

3(ln4ln5log57+1log65)= -3(\frac{\ln4}{\ln5}-\log_57+\frac{1}{\log_65})=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Apply the change-of-base formula to ln4ln5\frac{\ln 4}{\ln 5}.

  • Step 2: Apply the reciprocal property to 1log65\frac{1}{\log_6 5}.

  • Step 3: Use the subtraction property of logs to simplify the expression.

  • Step 4: Combine the simplified logarithms and multiply by -3.

Now, let's work through each step:

Step 1: Using the change-of-base formula, we have ln4ln5=log54\frac{\ln 4}{\ln 5} = \log_5 4.

Step 2: Apply the reciprocal property to the third term: 1log65=log56\frac{1}{\log_6 5} = \log_5 6.

Step 3: Substitute into the expression: 3(log54log57+log56)-3(\log_5 4 - \log_5 7 + \log_5 6).

Step 4: Combine terms using the properties of logs: log54log57+log56=log5(4×67)\log_5 4 - \log_5 7 + \log_5 6 = \log_5 \left(\frac{4 \times 6}{7}\right).

Step 5: Simplify to get: log5(247)\log_5 \left(\frac{24}{7}\right).

Multiply by -3: 3(log5(247))=3log5(724) -3(\log_5 (\frac{24}{7})) = 3\log_5 \left(\frac{7}{24}\right) .

Therefore, the solution to the problem is 3log5724 3\log_5 \frac{7}{24} .

Answer

3log5724 3\log_5\frac{7}{24}