log7x+log(x+1)−log7=log2x−logx
?=x
\( \log7x+\log(x+1)-\log7=\log2x-\log x \)
\( ?=x \)
\( \log_89-\log_83+\log_4x^2=\log_81.5+\log_82+\log_4(-x^2-11x-9) \)
?=x
\( \frac{2\ln4}{\ln5}+\frac{1}{\log_{(x^2+8)}5}=\log_5(7x^2+9x) \)
\( x=\text{?} \)
\( \log_2x+\log_2\frac{x}{2}=5 \)
?=x
\( \log_4x+\log_4(x+2)=2 \)
Defined domain
x>0
x+1>0
x>-1
We reduce by: and by
Undefined domain x>0
Defined domain
?=x
To solve the equation: , we proceed as follows:
Step 1: Simplify Both Sides
On the left-hand side (LHS), apply logarithmic subtraction:
.
Note remains and convert using the base switch to :
.
Thus, the LHS combines into:
(because ).
On the right-hand side (RHS):
Combine:
.
Also apply for term:
.
Step 2: Equalize Both Sides
Equate LHS and RHS logarithmic expressions:
.
The cancels out on both sides, leaving:
.
Step 3: Solve for
Since the denominators are equal, set the numerators equal:
.
Translate this into an exponential equation:
or
.
Let , solve the resulting quadratic equation:
.
Then, finding valid by allowing roots of polynomial calculations should yield laws consistency:
or rather substituting potential values. After appropriate checks:
The valid that satisfies the problem is thus .
To solve the given equation, follow these steps:
We start with the expression:
Use the change-of-base formula to rewrite everything in terms of natural logarithms:
Multiplying the entire equation by to eliminate the denominators:
By properties of logarithms (namely the product and power laws), combine the left side using the addition property:
Since the natural logarithm function is one-to-one, equate the arguments:
Rearrange this into a standard form of a quadratic equation:
Attempt to solve this quadratic equation using the quadratic formula:
Where , , and .
Calculate the discriminant:
The discriminant is positive, suggesting real solutions should exist, however, verification against the domain constraints of logarithms (arguments must be positive) is needed.
After solving , the following is noted:
The polynomial does not yield any values in domains valid for the original logarithmic arguments.
Cross-verify the potential solutions against original conditions:
Solutions obtained do not satisfy these together within the purview of the rational roots and ultimately render no real value for .
Therefore, the solution to the problem is: There is no solution.
No solution
?=x
?=a
\( \ln(a+5)+\ln(a+7)=0 \)
\( \log3x+\log(x-1)=3 \)
\( ?=x \)
Find X
\( \frac{\log_84x+\log_8(x+2)}{\log_83}=3 \)
\( x=\text{?} \)
\( \ln(x+5)+\ln x≤\ln4+\ln2x \)
Solve for X:
\( \ln x+\ln(x+1)-\ln2=3 \)
?=a
Find X
0 < X \le 3
Solve for X:
\( \log_{0.25}7+\log_{0.25}\frac{1}{3}<\log_{0.25}x^2 \)
\( x=\text{?} \)
\( \log_49x+\log_4(x+4)-\log_43=\ln2e+\ln\frac{1}{2e} \)
Find X
\( \log_5x+\log_5(x+2)+\log_25-\log_22.5=\log_37\times\log_79 \)
Given 0<a , find X:
\( \log_{2a}e^7(\ln a+\ln4a)=\log_4x-\log_4x^2+\log_4\frac{1}{x+1} \)
\( \log_ax\log_by\log_c2=(\log_ay^3-\log_ay^2)(\log_b\frac{1}{2}+\log_b2^2)\log_c(x^2+1) \)
\log_{0.25}7+\log_{0.25}\frac{1}{3}<\log_{0.25}x^2
-\sqrt{\frac{7}{3}} < x < 0,0 < x < \sqrt{\frac{7}{3}}
Find X
Given 0<a , find X:
No solution