Examples with solutions for The Sum of Logarithms: Using variables

Exercise #1

2ln4ln5+1log(x2+8)5=log5(7x2+9x) \frac{2\ln4}{\ln5}+\frac{1}{\log_{(x^2+8)}5}=\log_5(7x^2+9x)

x=? x=\text{?}

Step-by-Step Solution

To solve the given equation, follow these steps:

We start with the expression:

2ln4ln5+1log(x2+8)5=log5(7x2+9x) \frac{2\ln4}{\ln5} + \frac{1}{\log_{(x^2+8)}5} = \log_5(7x^2+9x)

Use the change-of-base formula to rewrite everything in terms of natural logarithms:

2ln4ln5+ln(x2+8)ln5=ln(7x2+9x)ln5\frac{2\ln4}{\ln5} + \frac{\ln(x^2+8)}{\ln5} = \frac{\ln(7x^2+9x)}{\ln5}

Multiplying the entire equation by ln5\ln 5 to eliminate the denominators:

2ln4+ln(x2+8)=ln(7x2+9x) 2\ln4 + \ln(x^2+8) = \ln(7x^2+9x)

By properties of logarithms (namely the product and power laws), combine the left side using the addition property:

ln(42(x2+8))=ln(7x2+9x)\ln(4^2(x^2+8)) = \ln(7x^2+9x)

ln(16x2+128)=ln(7x2+9x)\ln(16x^2 + 128) = \ln(7x^2 + 9x)

Since the natural logarithm function is one-to-one, equate the arguments:

16x2+128=7x2+9x 16x^2 + 128 = 7x^2 + 9x

Rearrange this into a standard form of a quadratic equation:

9x29x+128=0 9x^2 - 9x + 128 = 0

Attempt to solve this quadratic equation using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Where a=9a = 9, b=9b = -9, and c=128c = -128.

Calculate the discriminant:

b24ac=(9)24(9)(128)=81+4608b^2 - 4ac = (-9)^2 - 4(9)(-128) = 81 + 4608

=4689= 4689

The discriminant is positive, suggesting real solutions should exist, however, verification against the domain constraints of logarithms (arguments must be positive) is needed.

After solving 9x29x+128=0 9x^2 - 9x + 128 = 0 , the following is noted:

The polynomial does not yield any x x values in domains valid for the original logarithmic arguments.

Cross-verify the potential solutions against original conditions:

  • For ln(x2+8) \ln(x^2+8) : Requires x2+8>0 x^2 + 8 > 0 , valid as x x values are always real.
  • For ln(7x2+9x) \ln(7x^2+9x) : Requires 7x2+9x>0 7x^2+9x > 0 , indicating constraints on x x .

Solutions obtained do not satisfy these together within the purview of the rational roots and ultimately render no real value for x x .

Therefore, the solution to the problem is: There is no solution.

Answer

No solution

Exercise #2

Find X

log84x+log8(x+2)log83=3 \frac{\log_84x+\log_8(x+2)}{\log_83}=3

Video Solution

Answer

1+312 -1+\frac{\sqrt{31}}{2}

Exercise #3

log23x×log58=log5a+log52a \log_23x\times\log_58=\log_5a+\log_52a

Given a>0 , express X by a

Video Solution

Answer

2a2273 \sqrt[3]{\frac{2a^2}{27}}

Exercise #4

Find X

ln8x×log7e2=2(log78+log7x2log7x) \ln8x\times\log_7e^2=2(\log_78+\log_7x^2-\log_7x)

Video Solution

Answer

For all x>0

Exercise #5

Solve for X:

lnx+ln(x+1)ln2=3 \ln x+\ln(x+1)-\ln2=3

Video Solution

Answer

1+1+8e32 \frac{-1+\sqrt{1+8e^3}}{2}

Exercise #6

log49x+log4(x+4)log43=ln2e+ln12e \log_49x+\log_4(x+4)-\log_43=\ln2e+\ln\frac{1}{2e}

Find X

Video Solution

Answer

2+393 -2+\frac{\sqrt{39}}{3}

Exercise #7

log5x+log5(x+2)+log25log22.5=log37×log79 \log_5x+\log_5(x+2)+\log_25-\log_22.5=\log_37\times\log_79

Video Solution

Answer

1+6 -1+\sqrt{6}

Exercise #8

(2log32+log3x)log23log2x=3x7 (2\log_32+\log_3x)\log_23-\log_2x=3x-7

x=? x=\text{?}

Video Solution

Answer

3 3

Exercise #9

Given 0<a , find X:

log2ae7(lna+ln4a)=log4xlog4x2+log41x+1 \log_{2a}e^7(\ln a+\ln4a)=\log_4x-\log_4x^2+\log_4\frac{1}{x+1}

Video Solution

Answer

12+1+4132 -\frac{1}{2}+\frac{\sqrt{1+4^{-13}}}{2}

Exercise #10

logx4+logx30.25xlogx11+x=3 \frac{\log_x4+\log_x30.25}{x\log_x11}+x=3

x=? x=\text{?}

Video Solution

Answer

2 2

Exercise #11

log59(log34x+log3(4x+1))=2(log54a3log52a) \log_59(\log_34x+\log_3(4x+1))=2(\log_54a^3-\log_52a)

Given a>0 , find X and express by a

Video Solution

Answer

18+1+8a28 -\frac{1}{8}+\frac{\sqrt{1+8a^2}}{8}

Exercise #12

logaxlogbylogc2=(logay3logay2)(logb12+logb22)logc(x2+1) \log_ax\log_by\log_c2=(\log_ay^3-\log_ay^2)(\log_b\frac{1}{2}+\log_b2^2)\log_c(x^2+1)

Video Solution

Answer

No solution