ln52ln4+log(x2+8)51=log5(7x2+9x)
x=?
\( \frac{2\ln4}{\ln5}+\frac{1}{\log_{(x^2+8)}5}=\log_5(7x^2+9x) \)
\( x=\text{?} \)
Find X
\( \frac{\log_84x+\log_8(x+2)}{\log_83}=3 \)
\( \log_23x\times\log_58=\log_5a+\log_52a \)
Given a>0 , express X by a
Find X
\( \ln8x\times\log_7e^2=2(\log_78+\log_7x^2-\log_7x) \)
Solve for X:
\( \ln x+\ln(x+1)-\ln2=3 \)
To solve the given equation, follow these steps:
We start with the expression:
Use the change-of-base formula to rewrite everything in terms of natural logarithms:
Multiplying the entire equation by to eliminate the denominators:
By properties of logarithms (namely the product and power laws), combine the left side using the addition property:
Since the natural logarithm function is one-to-one, equate the arguments:
Rearrange this into a standard form of a quadratic equation:
Attempt to solve this quadratic equation using the quadratic formula:
Where , , and .
Calculate the discriminant:
The discriminant is positive, suggesting real solutions should exist, however, verification against the domain constraints of logarithms (arguments must be positive) is needed.
After solving , the following is noted:
The polynomial does not yield any values in domains valid for the original logarithmic arguments.
Cross-verify the potential solutions against original conditions:
Solutions obtained do not satisfy these together within the purview of the rational roots and ultimately render no real value for .
Therefore, the solution to the problem is: There is no solution.
No solution
Find X
Given a>0 , express X by a
Find X
For all x>0
Solve for X:
\( \log_49x+\log_4(x+4)-\log_43=\ln2e+\ln\frac{1}{2e} \)
Find X
\( \log_5x+\log_5(x+2)+\log_25-\log_22.5=\log_37\times\log_79 \)
\( (2\log_32+\log_3x)\log_23-\log_2x=3x-7 \)
\( x=\text{?} \)
Given 0<a , find X:
\( \log_{2a}e^7(\ln a+\ln4a)=\log_4x-\log_4x^2+\log_4\frac{1}{x+1} \)
\( \frac{\log_x4+\log_x30.25}{x\log_x11}+x=3 \)
\( x=\text{?} \)
Find X
Given 0<a , find X:
\( \log_59(\log_34x+\log_3(4x+1))=2(\log_54a^3-\log_52a) \)
Given a>0 , find X and express by a
\( \log_ax\log_by\log_c2=(\log_ay^3-\log_ay^2)(\log_b\frac{1}{2}+\log_b2^2)\log_c(x^2+1) \)
Given a>0 , find X and express by a
No solution