Addition of Logarithms

The definition of a logarithm is:


logax=blog_a⁡x=b
X=abX=a^b

Where:
aa is the base of the exponent
XX is what appears inside the log, can also appear in parentheses
bb is the exponent we raise the log base to in order to get the number that appears inside the log.

Adding logarithms with the same base is based on the following rule:


logax+logay=loga(xy)log_a⁡x+log_a⁡y=log_a⁡(x\cdot y)

Visual explanation of logarithmic rules showing log(x·y) equals log(x) plus log(y), and log(x/y) equals log(x) minus log(y), with arrows connecting each part for clarity.

Adding logarithms with different bases is done by changing the base of the log using the following rule:

logaX=logbase we want to change toXlogbase we want to change toalog_aX=\frac{log_{base~we~want~to~change~to}X}{log_{base~we~want~to~change~to}a}

Logarithmic change of base formula illustrated: log base b of a equals log base x of a divided by log base x of b, with arrows showing transformation from original form.

Practice The Sum of Logarithms

Examples with solutions for The Sum of Logarithms

Exercise #1

log103+log104= \log_{10}3+\log_{10}4=

Video Solution

Step-by-Step Solution

To solve this problem, we will use the property of logarithms that allows us to combine the sum of two logarithms:

  • Step 1: Identify the formula. We use the property logb(x)+logb(y)=logb(xy)\log_b(x) + \log_b(y) = \log_b(x \cdot y) where both logarithms must have the same base.
  • Step 2: Recognize the base. Here, both logarithms are in base 10: log103\log_{10}3 and log104\log_{10}4.
  • Step 3: Apply the property. Add the two logarithms using the formula: log103+log104=log10(34)\log_{10}3 + \log_{10}4 = \log_{10}(3 \cdot 4).
  • Step 4: Perform the multiplication. Compute 343 \cdot 4 to get 12.
  • Step 5: Express the result as a single logarithm: log1012\log_{10}12.

Therefore, the expression log103+log104\log_{10}3 + \log_{10}4 simplifies to log1012\log_{10}12.

Answer

log1012 \log_{10}12

Exercise #2

log24+log25= \log_24+\log_25=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the given expression as log24+log25 \log_2 4 + \log_2 5 .
  • Step 2: Use the sum of logarithms rule to simplify the expression.
  • Step 3: Calculate the product and express the result.

Let's work through each step:

Step 1: We have log24+log25 \log_2 4 + \log_2 5 as our expression.

Step 2: Apply the sum of logarithms formula:

log24+log25=log2(45) \log_2 4 + \log_2 5 = \log_2 (4 \cdot 5)

Step 3: Calculate the product:

4×5=20 4 \times 5 = 20

Thus, log2(45)=log220 \log_2 (4 \cdot 5) = \log_2 20 .

Therefore, the solution to the problem is log220 \log_2 20 .

Answer

log220 \log_220

Exercise #3

log974+log912= \log_974+\log_9\frac{1}{2}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll apply the following steps:

  • Step 1: Identify given logarithms and their base.
  • Step 2: Employ the sum of logarithms property to combine the terms.
  • Step 3: Calculate the resulting argument of the logarithm.

Now, let's work through each step:

Step 1: We have two logarithms: log974\log_9 74 and log912\log_9 \frac{1}{2}, sharing the base of 99.

Step 2: Since the bases are the same, we use the sum property of logarithms:

log974+log912=log9(74×12)\log_9 74 + \log_9 \frac{1}{2} = \log_9 (74 \times \frac{1}{2}).

Step 3: Calculate the product 74×1274 \times \frac{1}{2}:

74×12=3774 \times \frac{1}{2} = 37.

So, we have:

log9(74×12)=log937\log_9 (74 \times \frac{1}{2}) = \log_9 37.

Therefore, the solution to the problem is log937\log_9 37.

Answer

log937 \log_937

Exercise #4

2log82+log83= 2\log_82+\log_83=

Video Solution

Step-by-Step Solution

2log82=log822=log84 2\log_82=\log_82^2=\log_84

2log82+log83=log84+log83= 2\log_82+\log_83=\log_84+\log_83=

log843=log812 \log_84\cdot3=\log_812

Answer

log812 \log_812

Exercise #5

3log49+8log413= 3\log_49+8\log_4\frac{1}{3}=

Video Solution

Step-by-Step Solution

Where:

3log49=log493=log4729 3\log_49=\log_49^3=\log_4729

y

8log413=log4(13)8= 8\log_4\frac{1}{3}=\log_4\left(\frac{1}{3}\right)^8=

log4138=log416561 \log_4\frac{1}{3^8}=\log_4\frac{1}{6561}

Therefore

3log49+8log413= 3\log_49+8\log_4\frac{1}{3}=

log4729+log416561 \log_4729+\log_4\frac{1}{6561}

logax+logay=logaxy \log_ax+\log_ay=\log_axy

(72916561)=log419 \left(729\cdot\frac{1}{6561}\right)=\log_4\frac{1}{9}

log491=log49 \log_49^{-1}=-\log_49

Answer

log49 -\log_49

Exercise #6

12log24×log38+log39×log37= \frac{1}{2}\log_24\times\log_38+\log_39\times\log_37=

Video Solution

Step-by-Step Solution

We break it down into parts

log24=x \log_24=x

2x=4 2^x=4

x=2 x=2

log39=x \log_39=x

3x=9 3^x=9

x=2 x=2

We substitute into the equation

122log38+2log37= \frac{1}{2}\cdot2\log_38+2\log_37=

1log38+2log37= 1\cdot\log_38+2\log_37=

log38+log372= \log_38+\log_37^2=

log38+log349= \log_38+\log_349=

log3(849)=log3392 \log_3\left(8\cdot49\right)=\log_3392 x=2 x=2

Answer

log3392 \log_3392

Exercise #7

log2x+log2x2=5 \log_2x+\log_2\frac{x}{2}=5

?=x

Video Solution

Step-by-Step Solution

To solve this equation, we follow these steps:

  • Step 1: Use the property of logarithms logba+logbc=logb(ac) \log_b a + \log_b c = \log_b (a \cdot c) to combine terms on the left-hand side of the equation.
  • Step 2: Simplify the expression under the logarithm and solve for x x .

Let's proceed through these steps:

Step 1: Rewrite the equation using logarithmic properties:
log2x+log2x2=log2x+log2xlog22\log_2 x + \log_2 \frac{x}{2} = \log_2 x + \log_2 x - \log_2 2

This simplifies to:
2log2x1=52 \log_2 x - 1 = 5

Step 2: Solve the equation:
Add 1 to both sides:

2log2x=6 2 \log_2 x = 6

Divide both sides by 2:

log2x=3 \log_2 x = 3

Now, convert the logarithmic equation to its exponential form:

x=23 x = 2^3

Calculate x x :

x=8 x = 8

Therefore, the solution to the problem is x=8 x = 8 .

Answer

8 8

Exercise #8

log47+log42log4x \log_47+\log_42\le\log_4x

x=? x=\text{?}

Video Solution

Step-by-Step Solution

To solve the given inequality log4(7)+log4(2)log4(x) \log_4(7) + \log_4(2) \le \log_4(x) , we will utilize the properties of logarithms:

  • First, apply the logarithm sum property: log4(7)+log4(2)=log4(7×2)=log4(14) \log_4(7) + \log_4(2) = \log_4(7 \times 2) = \log_4(14) .
  • Now, the inequality becomes log4(14)log4(x) \log_4(14) \le \log_4(x) .
  • Since the logarithm function is monotonically increasing when the base is greater than 1, we can simplify the inequality to 14x 14 \le x .

Therefore, the solution to the inequality is x14 x \ge 14 .

Therefore, the correct choice is 14x 14 \le x , which matches the given correct answer.

Answer

14x 14\le x

Exercise #9

log4x+log4(x+2)=2 \log_4x+\log_4(x+2)=2

Video Solution

Step-by-Step Solution

To solve the given logarithmic equation, let's proceed step-by-step:

  • Step 1: Use the product rule of logarithms:
    Given the equation log4x+log4(x+2)=2 \log_4 x + \log_4 (x+2) = 2 , apply the product rule to combine the logs:
    log4(x(x+2))=2\log_4 (x(x+2)) = 2.
  • Step 2: Convert the equation from logarithmic to exponential form:
    The equation becomes x(x+2)=42 x(x+2) = 4^2 , which simplifies to x(x+2)=16 x(x+2) = 16 .
  • Step 3: Expand and rearrange the quadratic equation:
    We have x2+2x16=0 x^2 + 2x - 16 = 0 .
  • Step 4: Solve the quadratic equation using the quadratic formula:
    The quadratic formula is x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} . Here, a=1 a = 1 , b=2 b = 2 , and c=16 c = -16 .
    Calculate the discriminant: b24ac=2241(16)=4+64=68 b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-16) = 4 + 64 = 68 .
    The solutions are given by:
    x=2±682 x = \frac{-2 \pm \sqrt{68}}{2} which simplifies to x=2±2172 x = \frac{-2 \pm 2\sqrt{17}}{2} .
    Thus, x=1±17 x = -1 \pm \sqrt{17} .
  • Step 5: Check the solutions within the original equation's domain:
    Since x x must be greater than zero, x=117 x = -1 - \sqrt{17} is invalid as it results in a negative value.
    Thus, the valid solution is x=1+17 x = -1 + \sqrt{17} .

Therefore, the solution to the problem is x=1+17 x = -1 + \sqrt{17} .

Answer

1+17 -1+\sqrt{17}

Exercise #10

?=a

ln(a+5)+ln(a+7)=0 \ln(a+5)+\ln(a+7)=0

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Combine the logarithms using the sum rule for logarithms.
  • Step 2: Solve the resulting equation for aa.
  • Step 3: Ensure the solution meets domain restrictions.

Let's work through each step:

Step 1: We have the equation ln(a+5)+ln(a+7)=0 \ln(a + 5) + \ln(a + 7) = 0 . Using the property of logarithms, combine the expressions:
ln(a+5)+ln(a+7)=ln((a+5)(a+7))=0\ln(a+5) + \ln(a+7) = \ln((a+5)(a+7)) = 0.

Step 2: Knowing ln((a+5)(a+7))=0\ln((a+5)(a+7)) = 0, use the exponential property that if ln(x)=0\ln(x) = 0, then x=1x = 1. Thus, set the expression inside the logarithm to 1:
(a+5)(a+7)=1(a+5)(a+7) = 1.

Now, expand and solve the equation:
a2+12a+35=1a^2 + 12a + 35 = 1.
Rearrange this into a quadratic form:
a2+12a+34=0a^2 + 12a + 34 = 0.

Step 3: Solve this quadratic equation using the quadratic formula a=b±b24ac2aa = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1,b=12, and c=34a = 1, b = 12, \text{ and } c = 34:
a=12±1224×1×342×1a = \frac{-12 \pm \sqrt{12^2 - 4 \times 1 \times 34}}{2 \times 1}.

Calculate the discriminant:
b24ac=144136=8b^2 - 4ac = 144 - 136 = 8.

Insert values back into the quadratic formula:
a=12±82a = \frac{-12 \pm \sqrt{8}}{2}.
Simplify:
a=12±222a = \frac{-12 \pm 2\sqrt{2}}{2} = 6±2-6 \pm \sqrt{2}.

Given the domain restrictions: a+5>0a+5 > 0 and a+7>0a+7 > 0, we calculate the solutions:
The acceptable value is 6+2 -6 + \sqrt{2} , since the domain restriction would invalidate another potential candidate.

Therefore, the solution to the problem is 6+2 -6 + \sqrt{2} .

Answer

6+2 -6+\sqrt{2}

Exercise #11

log3x+log(x1)=3 \log3x+\log(x-1)=3

?=x ?=x

Video Solution

Step-by-Step Solution

To solve the problem, we'll follow these steps:

  • Step 1: Combine the logarithms using the product rule.
  • Step 2: Convert the logarithmic equation to an exponential equation.
  • Step 3: Simplify and solve the quadratic equation.
  • Step 4: Consider only solutions greater than 1.

Now, let's work through each step:
Step 1: Combine the logarithms using the product rule:
log(3x)+log(x1)=log((3x)(x1))\log(3x) + \log(x-1) = \log((3x)(x-1)).
Step 2: Convert the logarithmic equation to an exponential equation:
log((3x)(x1))=3(3x)(x1)=103\log((3x)(x-1)) = 3 \Rightarrow (3x)(x-1) = 10^3.
Step 3: Simplify the quadratic equation:
(3x)(x1)=1000(3x)(x-1) = 1000 :
3x23x=10003x^2 - 3x = 1000.
3x23x1000=0\Rightarrow 3x^2 - 3x - 1000 = 0.
Divide by 3 to simplify:
x2x10003=0x^2 - x - \frac{1000}{3} = 0.
Solve this equation using the quadratic formula:
The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
Here, a=1a = 1, b=1b = -1, and c=10003c = -\frac{1000}{3}.
Calculate the discriminant:\ D=(1)24×1×(10003) =1+40003=40033D = (-1)^2 - 4 \times 1 \times \left(-\frac{1000}{3}\right)\ = 1 + \frac{4000}{3} = \frac{4003}{3}.
Now, calculate xx:
x=(1)±400332×1x = \frac{-(-1) \pm \sqrt{\frac{4003}{3}}}{2 \times 1}.
x=1±400332\Rightarrow x = \frac{1 \pm \sqrt{\frac{4003}{3}}}{2}.
Calculating this gives approximately x18.8x \approx 18.8.
Step 4: Verify that x>1x > 1 to be in the domain.
Since this is true, the valid solution is within the domain, confirming:
Therefore, the solution to the problem is x=18.8 x = 18.8 .

Answer

18.8 18.8

Exercise #12

Find X

log84x+log8(x+2)log83=3 \frac{\log_84x+\log_8(x+2)}{\log_83}=3

Video Solution

Step-by-Step Solution

To solve the given equation log8(4x)+log8(x+2)log83=3\frac{\log_8(4x) + \log_8(x+2)}{\log_8 3} = 3, we follow these steps:

  • Step 1: Combine the logs in the numerator using the product rule

    We use the product rule: log8(4x)+log8(x+2)=log8((4x)(x+2))=log8(4x2+8x)\log_8(4x) + \log_8(x+2) = \log_8((4x)(x+2)) = \log_8(4x^2 + 8x).

  • Step 2: Equate the fraction to 3 and solve the resulting equation

    This gives us log8(4x2+8x)log83=3\frac{\log_8(4x^2 + 8x)}{\log_8 3} = 3.

    Cross-multiplying, we have log8(4x2+8x)=3log83\log_8(4x^2 + 8x) = 3\log_8 3.

    By the power rule, we can simplify as log8(4x2+8x)=log833=log827\log_8(4x^2 + 8x) = \log_8 3^3 = \log_8 27.

  • Step 3: Solve for x x

    Since the logarithms are the same base, we equate the arguments: 4x2+8x=274x^2 + 8x = 27.

    Rearranging gives the quadratic equation 4x2+8x27=04x^2 + 8x - 27 = 0.

    We solve this quadratic equation using the quadratic formula: x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=4 a = 4, b=8 b = 8, and c=27 c = -27.

    Thus, x=8±8244(27)24 x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 4 \cdot (-27)}}{2 \cdot 4}.

    Calculating further, x=8±64+4328 x = \frac{-8 \pm \sqrt{64 + 432}}{8}.

    This simplifies to x=8±4968 x = \frac{-8 \pm \sqrt{496}}{8}.

    Simplifying 496=431\sqrt{496} = 4\sqrt{31}, the equation becomes:

    x=8±4318 x = \frac{-8 \pm 4\sqrt{31}}{8}.

    Further simplifying gives us two solutions: x=1±312 x = -1 \pm \frac{\sqrt{31}}{2}.

Given that x x must be positive for the original logarithms to be valid, we take x=1+312 x = -1 + \frac{\sqrt{31}}{2}.

Therefore, the correct solution is x=1+312 x = -1+\frac{\sqrt{31}}{2} .

Answer

1+312 -1+\frac{\sqrt{31}}{2}

Exercise #13

log4x+log2log9=log24 \log4x+\log2-\log9=\log_24

?=x

Video Solution

Step-by-Step Solution

To solve the equation log4x+log2log9=log24\log 4x + \log 2 - \log 9 = \log_2 4, we will follow these steps:

  • Step 1: Simplify the left side using logarithmic properties
  • Step 2: Convert the right side using change of base
  • Step 3: Equate the simplified expressions and solve for xx

Step 1: Simplify the left side:

The left side log4x+log2log9\log 4x + \log 2 - \log 9 can be combined using the properties of logarithms:

log4x+log2=log(4x2)=log(8x)\log 4x + \log 2 = \log(4x \cdot 2) = \log(8x)

Now, using the subtraction property:

log(8x)log9=log(8x9)\log (8x) - \log 9 = \log \left(\frac{8x}{9}\right)

Step 2: Convert the right side using the change of base formula:

log24=log4log2\log_2 4 = \frac{\log 4}{\log 2}

We recognize that 4=224 = 2^2, so log24=2\log_2 4 = 2.

Step 3: Equate the expressions and solve for xx:

Now equate:

log(8x9)=2\log \left(\frac{8x}{9}\right) = 2

This implies:

8x9=102=100\frac{8x}{9} = 10^2 = 100

Thus, solving for xx:

8x=9008x = 900

x=9008=112.5x = \frac{900}{8} = 112.5

Therefore, the solution to the problem is x=112.5x = 112.5.

Answer

112.5 112.5

Exercise #14

log9e3×(log224log28)(ln8+ln2) \log_9e^3\times(\log_224-\log_28)(\ln8+\ln2)

Video Solution

Step-by-Step Solution

We will solve the problem step by step:

Step 1: Simplify log9e3\log_9 e^3

  • Using the change of base formula, log9e3=lne3ln9\log_9 e^3 = \frac{\ln e^3}{\ln 9}.
  • We know lne3=3lne=3\ln e^3 = 3\ln e = 3, because lne=1\ln e = 1.
  • Thus, log9e3=3ln9=32ln3\log_9 e^3 = \frac{3}{\ln 9} = \frac{3}{2\ln 3}, since ln9=2ln3\ln 9 = 2\ln 3.
  • Therefore, log9e3=32ln3\log_9 e^3 = \frac{3}{2\ln 3}.

Step 2: Simplify log224log28\log_2 24 - \log_2 8

  • Use the logarithm subtraction rule: log224log28=log2(248)=log23\log_2 24 - \log_2 8 = \log_2 \left(\frac{24}{8}\right) = \log_2 3.

Step 3: Simplify ln8+ln2\ln 8 + \ln 2

  • Using the product property of logarithms: ln8+ln2=ln(8×2)=ln16\ln 8 + \ln 2 = \ln(8 \times 2) = \ln 16.
  • Since 16=2416 = 2^4, ln16=4ln2\ln 16 = 4\ln 2.

Step 4: Combine the results

  • We need to check the overall structure: log9e3×log23×4ln2\log_9 e^3 \times \log_2 3 \times 4 \ln 2.
  • Previously calculated: log9e3=32ln3\log_9 e^3 = \frac{3}{2 \ln 3}, log23=ln3ln2\log_2 3 = \frac{\ln 3}{\ln 2}.
  • Therefore, the entire expression becomes:
  • 32ln3×ln3ln2×4ln2=32×4=6\frac{3}{2 \ln 3} \times \frac{\ln 3}{\ln 2} \times 4 \ln 2 = \frac{3}{2} \times 4 = 6.

Therefore, the solution to the problem is 6 6 .

Answer

6 6

Exercise #15

log45+log423log42= \frac{\log_45+\log_42}{3\log_42}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Combine the logarithms in the numerator.
  • Step 2: Simplify the expression using logarithmic properties.

Now, let's work through each step:

Step 1: Combine the logarithms in the numerator using the sum of logarithms property:

log45+log42=log4(5×2)=log410.\log_45 + \log_42 = \log_4(5 \times 2) = \log_4 10.

Step 2: Simplify the entire expression log4103log42\frac{\log_4 10}{3\log_4 2}:

log4103log42=log410log423=log410log48=log810.\frac{\log_4 10}{3 \log_4 2} = \frac{\log_4 10}{\log_4 2^3} = \frac{\log_4 10}{\log_4 8} = \log_8 10.

This follows from the property that logbxlogby=logyx\frac{\log_b x}{\log_b y} = \log_y x.

Therefore, the solution to the problem is log810\log_8 10.

Answer

log810 \log_810