Examples with solutions for Change-of-Base Formula for Logarithms: Inequality

Exercise #1

Is inequality true?

\log_{\frac{1}{4}}9<\frac{\log_57}{\log_5\frac{1}{4}}

Video Solution

Step-by-Step Solution

To solve this problem, we will rewrite both sides of the inequality with the change of base formula and evaluate them:

  • Step 1: Rewrite both logarithms using common base.
    Using the change of base formula, log149=log29log214 \log_{\frac{1}{4}}9 = \frac{\log_29}{\log_2\frac{1}{4}} and log57log514\frac{\log_57}{\log_5\frac{1}{4}} can also be rewritten similarly.
  • Step 2: Recognize that changing everything to base 2 will be beneficial.
    log2(1/4)=log241=2\log_2 (1/4) = \log_2 4^{-1} = -2.
  • Step 3: Evaluate left side.
    log149=log292=log292 \log_{\frac{1}{4}}9 = \frac{\log_2 9}{-2} = -\frac{\log_2 9}{2} .
  • Step 4: Evaluate right side using the same base.
    log57log514=log272 \frac{\log_57}{\log_5\frac{1}{4}} = -\frac{\log_2 7}{2} , where log24=2-\log_2 4 = 2.
  • Step 5: Compare both expressions
    log292<log272=>log29<log27=>9<7-\frac{\log_2 9}{2} < -\frac{\log_2 7}{2} => \log_2 9 < \log_2 7 => 9 < 7.
  • Step 6: Since 9>79 > 7, convert the logarithmic expressions back into log14\log_{\frac{1}{4}}.
    log147\log_{\frac{1}{4}}7 is smaller than log149\log_{\frac{1}{4}}9, so inequation holds.

After comparing these expressions, we see that log149<log147 \log_{\frac{1}{4}}9 < \log_{\frac{1}{4}}7 indeed holds true.

Therefore, the solution is: Yes, since: log149<log147 \log_{\frac{1}{4}}9 < \log_{\frac{1}{4}}7 .

Answer

Yes, since:

\log_{\frac{1}{4}}9<\log_{\frac{1}{4}}7

Exercise #2

What is the domain of X so that the following is satisfied:

\frac{\log_{\frac{1}{8}}2x}{\log_{\frac{1}{8}}4}<\log_4(5x-2)

Video Solution

Step-by-Step Solution

To solve the inequality log18(2x)log18(4)<log4(5x2) \frac{\log_{\frac{1}{8}}(2x)}{\log_{\frac{1}{8}}(4)} < \log_4(5x - 2) , we proceed as follows:

  • Step 1: Convert all logarithms to a common base using the change of base formula:

    log18(a)=log(a)log(18)\log_{\frac{1}{8}}(a) = \frac{\log(a)}{\log(\frac{1}{8})} and log4(b)=log(b)log(4)\log_4(b) = \frac{\log(b)}{\log(4)}.

  • Step 2: Simplify the inequality using these conversions.

    The left expression becomes log(2x)log(18)÷log(4)log(18)=log(2x)log(4)\frac{\log(2x)}{\log(\frac{1}{8})} \div \frac{\log(4)}{\log(\frac{1}{8})} = \frac{\log(2x)}{\log(4)}.

  • Step 3: The inequality simplifies to log(2x)log(4)<log(5x2)log(4)\frac{\log(2x)}{\log(4)} < \frac{\log(5x - 2)}{\log(4)}.
  • Step 4: Since both sides are divided by the positive log(4)\log(4), the inequality remains:

    log(2x)<log(5x2)\log(2x) < \log(5x - 2).

  • Step 5: Remove logs since the logarithms are to the same base, leading to 2x<5x22x < 5x - 2.
  • Step 6: Solve the inequality 2x<5x22x < 5x - 2. Rearrange terms: 2<3x2 < 3x.
  • Step 7: Divide both sides by 3 to solve for xx: 23<x\frac{2}{3} < x.
  • Step 8: Validate (5x2)>0(5x - 2) > 0 implies x>25x > \frac{2}{5}, which is consistent with our solution.

Therefore, the solution to the problem is 23<x \frac{2}{3} < x , which is choice 1.

Answer

\frac{2}{3} < x

Exercise #3

Given X>1 find the domain X where it is satisfied:

log3(x2+5x+4)log3x<logx12 \frac{\log_3(x^2+5x+4)}{\log_3x}<\log_x12

Video Solution

Step-by-Step Solution

To solve the problem:

  • Given the inequality log3(x2+5x+4)log3x<logx12\frac{\log_3(x^2+5x+4)}{\log_3x}<\log_x12, apply the change-of-base formula:
  • Rewrite logx12=log312log3x\log_x 12 = \frac{\log_3 12}{\log_3 x}.
  • Substitute into the inequality:
  • log3(x2+5x+4)log3x<log312log3x\frac{\log_3(x^2 + 5x + 4)}{\log_3 x} < \frac{\log_3 12}{\log_3 x}.
  • Cross multiply assuming log3x>0\log_3 x > 0 (because x>1x > 1): log3(x2+5x+4)<log312\log_3(x^2 + 5x + 4) < \log_3 12.
  • The inequality log3(x2+5x+4)<log312\log_3(x^2 + 5x + 4) < \log_3 12 implies:
  • x2+5x+4<12x^2 + 5x + 4 < 12.
  • Simplify: x2+5x+412<0x^2 + 5x + 4 - 12 < 0, which gives x2+5x8<0x^2 + 5x - 8 < 0.
  • Find roots for x2+5x8=0x^2 + 5x - 8 = 0 using the quadratic formula:
  • x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=1,b=5,c=8a = 1, b = 5, c = -8.
  • x=5±5241(8)2x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot (-8)}}{2}.
  • x=5±572x = \frac{-5 \pm \sqrt{57}}{2}.
  • We find the intervals projecting on the inequality sign: x2+5x8<0x^2 + 5x - 8 < 0.
  • Analyzing the sign change for 1<x<5+5721 < x < \frac{-5 + \sqrt{57}}{2}.
  • Additionally, confirm x2+5x+4>0x^2 + 5x + 4 > 0 for valid logarithm argument, which is naturally satisfied in previous constraints.

Therefore, the solution is: 1<x<2.5+572\mathbf{1 < x < -2.5+\frac{\sqrt{57}}{2}}.

Answer

1 < x < -2.5+\frac{\sqrt{57}}{2}