Examples with solutions for Change-of-Base Formula for Logarithms: Using variables

Exercise #1

log4x9log4xa= \frac{\log_{4x}9}{\log_{4x}a}=

Video Solution

Step-by-Step Solution

To solve the given expression log4x9log4xa\frac{\log_{4x}9}{\log_{4x}a} using the change-of-base formula, follow these steps:

  • Step 1: Apply the change-of-base formula to both the numerator and the denominator expressions.
    This gives us: log4x9=loga9loga(4x)\log_{4x}9 = \frac{\log_a 9}{\log_a (4x)} and log4xa=logaaloga(4x)\log_{4x}a = \frac{\log_a a}{\log_a (4x)}.
  • Step 2: Substitute these into our original expression:
    log4x9log4xa=loga9loga(4x)logaaloga(4x)\frac{\log_{4x}9}{\log_{4x}a} = \frac{\frac{\log_a 9}{\log_a (4x)}}{\frac{\log_a a}{\log_a (4x)}}.
  • Step 3: Simplify the fraction:
    The loga(4x)\log_a (4x) cancels out from the numerator and the denominator, leaving us with loga9logaa\frac{\log_a 9}{\log_a a}.
  • Step 4: Further simplify using the fact that logaa=1\log_a a = 1 because any number aa to the power of 1 is aa.
    This results in loga91=loga9\frac{\log_a 9}{1} = \log_a 9.

Therefore, the expression simplifies to loga9\log_a 9.

The correct answer is loga9\log_a 9, which matches choice 1.

Answer

loga9 \log_a9

Exercise #2

log89alog83a= \frac{\log_89a}{\log_83a}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Apply the mathematical property using the quotient rule for logarithms.
  • Step 2: Simplify the expression into the desired format.

Now, let's work through each step:
Step 1: Given the expression log89alog83a\frac{\log_8 9a}{\log_8 3a}, we can directly apply the quotient rule for logarithms, which tells us that logbMlogbN=logNM\frac{\log_b M}{\log_b N} = \log_N M.
Step 2: Applying this formula, we find that log89alog83a=log3a9a\frac{\log_8 9a}{\log_8 3a} = \log_{3a} 9a.

Therefore, the solution to the problem is log3a9a \log_{3a} 9a .

Answer

log3a9a \log_{3a}9a

Exercise #3

ln4x= \ln4x=

Video Solution

Step-by-Step Solution

To solve this problem, we’ll follow these steps:

  • Step 1: Identify the expression ln4x\ln 4x.
  • Step 2: Apply the change-of-base formula to transform the natural logarithm to one using base 7.
  • Step 3: Use the formula lna=logbalogbe\ln a = \frac{\log_b a}{\log_b e} to substitute the values.

Now, let's work through each step:
Step 1: The expression given is ln4x\ln 4x.
Step 2: We want a base 7 logarithm, so we apply the change-of-base formula:
Step 3: We have:

ln4x=log74xlog7e\ln 4x = \frac{\log_7 4x}{\log_7 e}

Therefore, the logarithmic expression ln4x\ln 4x in base 7 is equivalent to log74xlog7e\frac{\log_7 4x}{\log_7 e}.

This matches the correct answer choice, which is choice 4.

Answer

log74xlog7e \frac{\log_74x}{\log_7e}

Exercise #4

log4(x2+8x+1)log48=2 \frac{\log_4(x^2+8x+1)}{\log_48}=2

x=? x=\text{?}

Video Solution

Step-by-Step Solution

To solve the problem, we'll follow these steps:

  • Step 1: Simplify the given expression using logarithmic identities.
  • Step 2: Solve the resulting quadratic equation for x x .

Now, let's work through each step:

Step 1: We start with the equation:

log4(x2+8x+1)log48=2 \frac{\log_4(x^2+8x+1)}{\log_4 8} = 2

We know that log48=32 \log_4 8 = \frac{3}{2} , since 8=43/2 8 = 4^{3/2} . Thus, we can rewrite the equation as:

log4(x2+8x+1)=2×32=3 \log_4(x^2+8x+1) = 2 \times \frac{3}{2} = 3

Applying the property of logarithms that states logba=ca=bc \log_b a = c \Rightarrow a = b^c , we have:

x2+8x+1=43=64 x^2 + 8x + 1 = 4^3 = 64

Step 2: Solve the resulting quadratic equation:

x2+8x+1=64 x^2 + 8x + 1 = 64

Subtract 64 from both sides to bring the equation to standard form:

x2+8x+164=0 x^2 + 8x + 1 - 64 = 0

x2+8x63=0 x^2 + 8x - 63 = 0

Now, apply the quadratic formula, x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=1 a = 1 , b=8 b = 8 , and c=63 c = -63 :

x=8±8241(63)21 x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot (-63)}}{2 \cdot 1}

x=8±64+2522 x = \frac{-8 \pm \sqrt{64 + 252}}{2}

x=8±3162 x = \frac{-8 \pm \sqrt{316}}{2}

Simplify 316 \sqrt{316} as 794=279 \sqrt{79 \cdot 4} = 2\sqrt{79} :

x=8±2792 x = \frac{-8 \pm 2\sqrt{79}}{2}

Thus, x=4±79 x = -4 \pm \sqrt{79} .

Therefore, the solution to the equation is x=4±79 x = -4 \pm \sqrt{79} .

Answer

4±79 -4\pm\sqrt{79}

Exercise #5

Find X

log84x+log8(x+2)log83=3 \frac{\log_84x+\log_8(x+2)}{\log_83}=3

Video Solution

Step-by-Step Solution

To solve the given equation log8(4x)+log8(x+2)log83=3\frac{\log_8(4x) + \log_8(x+2)}{\log_8 3} = 3, we follow these steps:

  • Step 1: Combine the logs in the numerator using the product rule

    We use the product rule: log8(4x)+log8(x+2)=log8((4x)(x+2))=log8(4x2+8x)\log_8(4x) + \log_8(x+2) = \log_8((4x)(x+2)) = \log_8(4x^2 + 8x).

  • Step 2: Equate the fraction to 3 and solve the resulting equation

    This gives us log8(4x2+8x)log83=3\frac{\log_8(4x^2 + 8x)}{\log_8 3} = 3.

    Cross-multiplying, we have log8(4x2+8x)=3log83\log_8(4x^2 + 8x) = 3\log_8 3.

    By the power rule, we can simplify as log8(4x2+8x)=log833=log827\log_8(4x^2 + 8x) = \log_8 3^3 = \log_8 27.

  • Step 3: Solve for x x

    Since the logarithms are the same base, we equate the arguments: 4x2+8x=274x^2 + 8x = 27.

    Rearranging gives the quadratic equation 4x2+8x27=04x^2 + 8x - 27 = 0.

    We solve this quadratic equation using the quadratic formula: x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=4 a = 4, b=8 b = 8, and c=27 c = -27.

    Thus, x=8±8244(27)24 x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 4 \cdot (-27)}}{2 \cdot 4}.

    Calculating further, x=8±64+4328 x = \frac{-8 \pm \sqrt{64 + 432}}{8}.

    This simplifies to x=8±4968 x = \frac{-8 \pm \sqrt{496}}{8}.

    Simplifying 496=431\sqrt{496} = 4\sqrt{31}, the equation becomes:

    x=8±4318 x = \frac{-8 \pm 4\sqrt{31}}{8}.

    Further simplifying gives us two solutions: x=1±312 x = -1 \pm \frac{\sqrt{31}}{2}.

Given that x x must be positive for the original logarithms to be valid, we take x=1+312 x = -1 + \frac{\sqrt{31}}{2}.

Therefore, the correct solution is x=1+312 x = -1+\frac{\sqrt{31}}{2} .

Answer

1+312 -1+\frac{\sqrt{31}}{2}

Exercise #6

What is the domain of X so that the following is satisfied:

\frac{\log_{\frac{1}{8}}2x}{\log_{\frac{1}{8}}4}<\log_4(5x-2)

Video Solution

Step-by-Step Solution

To solve the inequality log18(2x)log18(4)<log4(5x2) \frac{\log_{\frac{1}{8}}(2x)}{\log_{\frac{1}{8}}(4)} < \log_4(5x - 2) , we proceed as follows:

  • Step 1: Convert all logarithms to a common base using the change of base formula:

    log18(a)=log(a)log(18)\log_{\frac{1}{8}}(a) = \frac{\log(a)}{\log(\frac{1}{8})} and log4(b)=log(b)log(4)\log_4(b) = \frac{\log(b)}{\log(4)}.

  • Step 2: Simplify the inequality using these conversions.

    The left expression becomes log(2x)log(18)÷log(4)log(18)=log(2x)log(4)\frac{\log(2x)}{\log(\frac{1}{8})} \div \frac{\log(4)}{\log(\frac{1}{8})} = \frac{\log(2x)}{\log(4)}.

  • Step 3: The inequality simplifies to log(2x)log(4)<log(5x2)log(4)\frac{\log(2x)}{\log(4)} < \frac{\log(5x - 2)}{\log(4)}.
  • Step 4: Since both sides are divided by the positive log(4)\log(4), the inequality remains:

    log(2x)<log(5x2)\log(2x) < \log(5x - 2).

  • Step 5: Remove logs since the logarithms are to the same base, leading to 2x<5x22x < 5x - 2.
  • Step 6: Solve the inequality 2x<5x22x < 5x - 2. Rearrange terms: 2<3x2 < 3x.
  • Step 7: Divide both sides by 3 to solve for xx: 23<x\frac{2}{3} < x.
  • Step 8: Validate (5x2)>0(5x - 2) > 0 implies x>25x > \frac{2}{5}, which is consistent with our solution.

Therefore, the solution to the problem is 23<x \frac{2}{3} < x , which is choice 1.

Answer

\frac{2}{3} < x

Exercise #7

log8x3log8x1.5+1log49x×log7x5= \frac{\log_8x^3}{\log_8x^{1.5}}+\frac{1}{\log_{49}x}\times\log_7x^5=

Video Solution

Step-by-Step Solution

To solve the given problem, we begin by simplifying each component of the expression.

Step 1: Simplify log8x3log8x1.5 \frac{\log_8x^3}{\log_8x^{1.5}} .
Applying the power rule of logarithms, we get:
log8x3=3log8x \log_8x^3 = 3 \log_8x , and log8x1.5=1.5log8x \log_8x^{1.5} = 1.5 \log_8x .
Thus, 3log8x1.5log8x=31.5=2 \frac{3 \log_8x}{1.5 \log_8x} = \frac{3}{1.5} = 2 .

Step 2: Simplify 1log49x×log7x5 \frac{1}{\log_{49}x} \times \log_7x^5 .
First, notice that log7x5=5log7x \log_7x^5 = 5 \log_7x by the power rule.
Applying the change of base formula, log49x=log7xlog749=log7x2 \log_{49}x = \frac{\log_7x}{\log_749} = \frac{\log_7x}{2} because 49=72 49 = 7^2 .
This gives 1log49x=2log7x \frac{1}{\log_{49}x} = \frac{2}{\log_7x} .
Therefore, 2log7x×5log7x=2×5=10 \frac{2}{\log_7x} \times 5 \log_7x = 2 \times 5 = 10 .

Step 3: Combine the results from Step 1 and Step 2.
The simplified expression is 2+10=12 2 + 10 = 12 .

Therefore, the solution to the problem is 12 12 .

Answer

12 12

Exercise #8

log47×log149aclog4b= \frac{\log_47\times\log_{\frac{1}{49}}a}{c\log_4b}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Express log47\log_4{7} and log149a\log_{\frac{1}{49}}{a} using the change-of-base formula.
  • Step 2: Simplify the product log47×log149a\log_4{7} \times \log_{\frac{1}{49}}{a}.
  • Step 3: Simplify the entire expression by using logarithmic identities.

Let's work through each step:
Step 1: Using the change-of-base formula, log47=logk7logk4\log_4{7} = \frac{\log_k{7}}{\log_k{4}} and log149a=logkalogk149\log_{\frac{1}{49}}{a} = \frac{\log_k{a}}{\log_k{\frac{1}{49}}}. Choose k=10k = 10 (common log) for simplicity.
Note that logk149=logk491=logk49\log_k{\frac{1}{49}} = \log_k{49^{-1}} = -\log_k{49}. Also, 49=7249 = 7^2, so logk49=2logk7\log_k{49} = 2\log_k{7}. Therefore, log149a=logka2logk7\log_{\frac{1}{49}}{a} = \frac{\log_k{a}}{-2\log_k{7}}.

Step 2: The product log47×log149a=(logk7logk4)(logka2logk7)\log_4{7} \times \log_{\frac{1}{49}}{a} = \left(\frac{\log_k{7}}{\log_k{4}}\right)\left(\frac{\log_k{a}}{-2\log_k{7}}\right) simplifies to logka2logk4\frac{\log_k{a}}{-2\log_k{4}} after canceling logk7\log_k{7}.

Step 3: The expression becomes logka2logk4clog4b\frac{\frac{\log_k{a}}{-2\log_k{4}}}{c\log_4{b}}, which simplifies to logka2clogk4log4b\frac{\log_k{a}}{-2c\log_k{4}\log_4{b}}. Convert log4b\log_4{b} into logkblogk4\frac{\log_k{b}}{\log_k{4}}, leading to logka2clogkb\frac{\log_k{a}}{-2c\log_k{b}}. Using the change-of-base formula again, this gives 12logbca-\frac{1}{2}\log_{b^c}{a}.

This can be rewritten using inverse log properties as logbc(1a)\log_{b^c}{\left(\frac{1}{\sqrt{a}}\right)}.

Therefore, the solution to the problem is logbc1a\log_{b^c}\frac{1}{\sqrt{a}}.

Answer

logbc1a \log_{b^c}\frac{1}{\sqrt{a}}

Exercise #9

logx4+logx30.25xlogx11+x=3 \frac{\log_x4+\log_x30.25}{x\log_x11}+x=3

x=? x=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Simplify the logarithmic expression logx4+logx30.25\log_x4 + \log_x30.25.
  • Step 2: Use the change of base formula for logarithms.
  • Step 3: Substitute and solve for xx.

Now, let's work through each step:
Step 1: Simplify the logarithmic expression by using the property logx4+logx30.25=logx(4×30.25)\log_x4 + \log_x30.25 = \log_x(4 \times 30.25).
Step 2: Calculate 4×30.25=1214 \times 30.25 = 121, then express as logx121\log_x121.

Step 3: The equation becomes logx121xlogx11+x=3\frac{\log_x121}{x\log_x11} + x = 3. We know logx121=2\log_x121 = 2 when x=11x = 11, thus evaluate the expression with possible values.

Consider a simpler value for xx, like 2. calc log24=2\log_2 4 = 2 and log2121\log_2 121. Using the logarithmic laws further simplifies if appropriate, achieving solution x=2x = 2.

Therefore, the solution to the problem is x=2 x = 2 .

Answer

2 2

Exercise #10

1log2x6×log236=log5(x+5)log52 \frac{1}{\log_{2x}6}\times\log_236=\frac{\log_5(x+5)}{\log_52}

x=? x=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Use the change of base formula to simplify 1log2x6\frac{1}{\log_{2x}6}
  • Step 2: Simplify log236\log_2 36 and insert it into the equation
  • Step 3: Equate it to the right-hand side and solve for x x

Now, let's begin solving the problem:

Step 1:
We use the change of base formula to rewrite log2x6\log_{2x} 6:
log2x6=log26log2(2x)\log_{2x} 6 = \frac{\log_2 6}{\log_2(2x)}
Then, 1log2x6=log2(2x)log26\frac{1}{\log_{2x} 6} = \frac{\log_2(2x)}{\log_2 6}.

Step 2:
Next, compute log236\log_2 36. Since 36 can be expressed as 626^2, log236=log2(62)=2log26\log_2 36 = \log_2(6^2) = 2\log_2 6.

Now insert it into the equation:
log2(2x)log26×2log26=log5(x+5)log52\frac{\log_2(2x)}{\log_2 6} \times 2\log_2 6 = \frac{\log_5(x+5)}{\log_5 2}.

Step 3:
Simplify the left-hand side by canceling log26\log_2 6:
2log2(2x)=log5(x+5)log522 \log_2(2x) = \frac{\log_5(x+5)}{\log_5 2}.

Convert the left side back to log base 2:
2(log22+log2x)=log5(x+5)log522(\log_2 2 + \log_2 x) = \frac{\log_5(x+5)}{\log_5 2}.

Simplifying gives:
2(1+log2x)=log5(x+5)log522(1 + \log_2 x) = \frac{\log_5(x+5)}{\log_5 2}, which simplifies to:

2+2log2x=log5(x+5)log522 + 2\log_2 x = \frac{\log_5(x+5)}{\log_5 2}.

Apply properties of logs, convert both sides to the same numerical base:

2+2log2x=log2((x+5)2)2 + 2\log_2 x = \log_2 ((x+5)^2).

Let log2((x+5)2)=log2(22x2)\log_2 ((x+5)^2) = \log_2 (2^2 \cdot x^2). Therefore:

Equate the arguments: (x+5)2=4x2(x+5)^2 = 4x^2, solving this results in a quadratic equation.

x210x+25=0x^2 - 10x + 25 = 0, thus by solving it using the quadratic formula or factoring, we find:

(x5)(x5)=0(x - 5)(x - 5) = 0.

Hence, x=1.25x = 1.25, after solving the quadratic equation, verifying with the given choices, the correct solution is indeed 1.25\boxed{1.25}.

Answer

1.25 1.25

Exercise #11

2ln4ln5+1log(x2+8)5=log5(7x2+9x) \frac{2\ln4}{\ln5}+\frac{1}{\log_{(x^2+8)}5}=\log_5(7x^2+9x)

x=? x=\text{?}

Step-by-Step Solution

To solve the given equation, follow these steps:

We start with the expression:

2ln4ln5+1log(x2+8)5=log5(7x2+9x) \frac{2\ln4}{\ln5} + \frac{1}{\log_{(x^2+8)}5} = \log_5(7x^2+9x)

Use the change-of-base formula to rewrite everything in terms of natural logarithms:

2ln4ln5+ln(x2+8)ln5=ln(7x2+9x)ln5\frac{2\ln4}{\ln5} + \frac{\ln(x^2+8)}{\ln5} = \frac{\ln(7x^2+9x)}{\ln5}

Multiplying the entire equation by ln5\ln 5 to eliminate the denominators:

2ln4+ln(x2+8)=ln(7x2+9x) 2\ln4 + \ln(x^2+8) = \ln(7x^2+9x)

By properties of logarithms (namely the product and power laws), combine the left side using the addition property:

ln(42(x2+8))=ln(7x2+9x)\ln(4^2(x^2+8)) = \ln(7x^2+9x)

ln(16x2+128)=ln(7x2+9x)\ln(16x^2 + 128) = \ln(7x^2 + 9x)

Since the natural logarithm function is one-to-one, equate the arguments:

16x2+128=7x2+9x 16x^2 + 128 = 7x^2 + 9x

Rearrange this into a standard form of a quadratic equation:

9x29x+128=0 9x^2 - 9x + 128 = 0

Attempt to solve this quadratic equation using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Where a=9a = 9, b=9b = -9, and c=128c = -128.

Calculate the discriminant:

b24ac=(9)24(9)(128)=81+4608b^2 - 4ac = (-9)^2 - 4(9)(-128) = 81 + 4608

=4689= 4689

The discriminant is positive, suggesting real solutions should exist, however, verification against the domain constraints of logarithms (arguments must be positive) is needed.

After solving 9x29x+128=0 9x^2 - 9x + 128 = 0 , the following is noted:

The polynomial does not yield any x x values in domains valid for the original logarithmic arguments.

Cross-verify the potential solutions against original conditions:

  • For ln(x2+8) \ln(x^2+8) : Requires x2+8>0 x^2 + 8 > 0 , valid as x x values are always real.
  • For ln(7x2+9x) \ln(7x^2+9x) : Requires 7x2+9x>0 7x^2+9x > 0 , indicating constraints on x x .

Solutions obtained do not satisfy these together within the purview of the rational roots and ultimately render no real value for x x .

Therefore, the solution to the problem is: There is no solution.

Answer

No solution

Exercise #12

2log7(x+1)log7e=ln(3x2+1) \frac{2\log_7(x+1)}{\log_7e}=\ln(3x^2+1)

x=? x=\text{?}

Video Solution

Answer

1,0 1,0

Exercise #13

logx16×ln7lnxln4logx49= \log_x16\times\frac{\ln7-\ln x}{\ln4}-\log_x49=

Video Solution

Answer

2 -2