Change of Logarithm Base

Reminder - Logarithms

The definition of the logarithm:
logax=blog_a⁡x=b
X=abX=a^b

Where:
aa is the base of the log
XX is what appears inside the log - can also appear inside of parentheses
bb is the exponent to which we raise the base of the log in order to obtain the number that appears inside of the log.

How to change the base of a logarithm?

According to the following rule:
logaX=logthe base we want to change toXlogthe base we want to change toalog_aX=\frac{log_{the~base~we~want~to~change~to}X}{log_{the~base~we~want~to~change~to}a}

Logarithmic change of base formula illustrated: log base b of a equals log base x of a divided by log base x of b, with arrows showing transformation from original form.

In the numerator there will be a log with the base we want to change to, as well as what appears inside of the original log.
In the denominator there will be a log with the base we want to change to, and the content will be the base of the original log.

Suggested Topics to Practice in Advance

  1. Addition of Logarithms
  2. Subtraction of Logarithms
  3. Multiplication of Logarithms
  4. Power in logarithm
  5. Changing the Base of a Logarithm

Practice Change-of-Base Formula for Logarithms

Examples with solutions for Change-of-Base Formula for Logarithms

Exercise #1

log85log89= \frac{\log_85}{\log_89}=

Video Solution

Step-by-Step Solution

To solve this problem, let's simplify the given expression log85log89\frac{\log_85}{\log_89}.

  • Step 1: Recognize that both the numerator and denominator have the same base, 8.
  • Step 2: The division property of logarithms states that logbMlogbN=logNM\frac{\log_b M}{\log_b N} = \log_N M.
  • Step 3: Apply the division rule to the given expression: log85log89=log95\frac{\log_8 5}{\log_8 9} = \log_9 5.

Thus, after simplifying, we see that log85log89=log95\frac{\log_85}{\log_89} = \log_9 5.

Hence, the correct answer is log95\log_9 5, which corresponds to the choice 1.

Answer

log95 \log_95

Exercise #2

log74= \log_74=

Video Solution

Step-by-Step Solution

To solve the problem of evaluating log74\log_7 4, we will use the change-of-base formula for logarithms.

The change-of-base formula is:

  • logba=logkalogkb\log_b a = \frac{\log_k a}{\log_k b}, where kk can be any base, commonly chosen as 10 (common logs) or ee (natural logs).

We will choose natural logarithms (ln\ln) for simplicity, therefore:

log74=ln4ln7\log_7 4 = \frac{\ln 4}{\ln 7}

By applying the change-of-base formula, we find that the logarithm log74\log_7 4 can be expressed as ln4ln7\frac{\ln 4}{\ln 7}.

Upon examining the provided choices, we identify that choice 2: ln4ln7\frac{\ln 4}{\ln 7} matches our result.

Therefore, the solution to the problem is ln4ln7\frac{\ln 4}{\ln 7}.

Answer

ln4ln7 \frac{\ln4}{\ln7}

Exercise #3

log4x9log4xa= \frac{\log_{4x}9}{\log_{4x}a}=

Video Solution

Step-by-Step Solution

To solve the given expression log4x9log4xa\frac{\log_{4x}9}{\log_{4x}a} using the change-of-base formula, follow these steps:

  • Step 1: Apply the change-of-base formula to both the numerator and the denominator expressions.
    This gives us: log4x9=loga9loga(4x)\log_{4x}9 = \frac{\log_a 9}{\log_a (4x)} and log4xa=logaaloga(4x)\log_{4x}a = \frac{\log_a a}{\log_a (4x)}.
  • Step 2: Substitute these into our original expression:
    log4x9log4xa=loga9loga(4x)logaaloga(4x)\frac{\log_{4x}9}{\log_{4x}a} = \frac{\frac{\log_a 9}{\log_a (4x)}}{\frac{\log_a a}{\log_a (4x)}}.
  • Step 3: Simplify the fraction:
    The loga(4x)\log_a (4x) cancels out from the numerator and the denominator, leaving us with loga9logaa\frac{\log_a 9}{\log_a a}.
  • Step 4: Further simplify using the fact that logaa=1\log_a a = 1 because any number aa to the power of 1 is aa.
    This results in loga91=loga9\frac{\log_a 9}{1} = \log_a 9.

Therefore, the expression simplifies to loga9\log_a 9.

The correct answer is loga9\log_a 9, which matches choice 1.

Answer

loga9 \log_a9

Exercise #4

log9e2log9e= \frac{\log_9e^2}{\log_9e}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the given expression log9e2log9e\frac{\log_9e^2}{\log_9e} using logarithmic rules:

Step 1: Apply the power rule of logarithms:
The numerator log9e2\log_9e^2 can be rewritten using the power rule: log9e2=2log9e\log_9e^2 = 2 \cdot \log_9e.

Step 2: Substitute and simplify the fraction:
Substitute the expression from Step 1 into the original problem:
log9e2log9e=2log9elog9e\frac{\log_9e^2}{\log_9e} = \frac{2 \cdot \log_9e}{\log_9e}.

Step 3: Cancel common terms:
Since log9e\log_9e appears in both the numerator and the denominator, it cancels out, leaving:
2log9elog9e=2 \frac{2 \cdot \log_9e}{\log_9e} = 2 .

Therefore, the solution to the problem is 2\boxed{2}.

Answer

2 2

Exercise #5

log89alog83a= \frac{\log_89a}{\log_83a}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Apply the mathematical property using the quotient rule for logarithms.
  • Step 2: Simplify the expression into the desired format.

Now, let's work through each step:
Step 1: Given the expression log89alog83a\frac{\log_8 9a}{\log_8 3a}, we can directly apply the quotient rule for logarithms, which tells us that logbMlogbN=logNM\frac{\log_b M}{\log_b N} = \log_N M.
Step 2: Applying this formula, we find that log89alog83a=log3a9a\frac{\log_8 9a}{\log_8 3a} = \log_{3a} 9a.

Therefore, the solution to the problem is log3a9a \log_{3a} 9a .

Answer

log3a9a \log_{3a}9a

Exercise #6

ln4x= \ln4x=

Video Solution

Step-by-Step Solution

To solve this problem, we’ll follow these steps:

  • Step 1: Identify the expression ln4x\ln 4x.
  • Step 2: Apply the change-of-base formula to transform the natural logarithm to one using base 7.
  • Step 3: Use the formula lna=logbalogbe\ln a = \frac{\log_b a}{\log_b e} to substitute the values.

Now, let's work through each step:
Step 1: The expression given is ln4x\ln 4x.
Step 2: We want a base 7 logarithm, so we apply the change-of-base formula:
Step 3: We have:

ln4x=log74xlog7e\ln 4x = \frac{\log_7 4x}{\log_7 e}

Therefore, the logarithmic expression ln4x\ln 4x in base 7 is equivalent to log74xlog7e\frac{\log_7 4x}{\log_7 e}.

This matches the correct answer choice, which is choice 4.

Answer

log74xlog7e \frac{\log_74x}{\log_7e}

Exercise #7

log4(x2+8x+1)log48=2 \frac{\log_4(x^2+8x+1)}{\log_48}=2

x=? x=\text{?}

Video Solution

Step-by-Step Solution

To solve the problem, we'll follow these steps:

  • Step 1: Simplify the given expression using logarithmic identities.
  • Step 2: Solve the resulting quadratic equation for x x .

Now, let's work through each step:

Step 1: We start with the equation:

log4(x2+8x+1)log48=2 \frac{\log_4(x^2+8x+1)}{\log_4 8} = 2

We know that log48=32 \log_4 8 = \frac{3}{2} , since 8=43/2 8 = 4^{3/2} . Thus, we can rewrite the equation as:

log4(x2+8x+1)=2×32=3 \log_4(x^2+8x+1) = 2 \times \frac{3}{2} = 3

Applying the property of logarithms that states logba=ca=bc \log_b a = c \Rightarrow a = b^c , we have:

x2+8x+1=43=64 x^2 + 8x + 1 = 4^3 = 64

Step 2: Solve the resulting quadratic equation:

x2+8x+1=64 x^2 + 8x + 1 = 64

Subtract 64 from both sides to bring the equation to standard form:

x2+8x+164=0 x^2 + 8x + 1 - 64 = 0

x2+8x63=0 x^2 + 8x - 63 = 0

Now, apply the quadratic formula, x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=1 a = 1 , b=8 b = 8 , and c=63 c = -63 :

x=8±8241(63)21 x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot (-63)}}{2 \cdot 1}

x=8±64+2522 x = \frac{-8 \pm \sqrt{64 + 252}}{2}

x=8±3162 x = \frac{-8 \pm \sqrt{316}}{2}

Simplify 316 \sqrt{316} as 794=279 \sqrt{79 \cdot 4} = 2\sqrt{79} :

x=8±2792 x = \frac{-8 \pm 2\sqrt{79}}{2}

Thus, x=4±79 x = -4 \pm \sqrt{79} .

Therefore, the solution to the equation is x=4±79 x = -4 \pm \sqrt{79} .

Answer

4±79 -4\pm\sqrt{79}

Exercise #8

Find X

log84x+log8(x+2)log83=3 \frac{\log_84x+\log_8(x+2)}{\log_83}=3

Video Solution

Step-by-Step Solution

To solve the given equation log8(4x)+log8(x+2)log83=3\frac{\log_8(4x) + \log_8(x+2)}{\log_8 3} = 3, we follow these steps:

  • Step 1: Combine the logs in the numerator using the product rule

    We use the product rule: log8(4x)+log8(x+2)=log8((4x)(x+2))=log8(4x2+8x)\log_8(4x) + \log_8(x+2) = \log_8((4x)(x+2)) = \log_8(4x^2 + 8x).

  • Step 2: Equate the fraction to 3 and solve the resulting equation

    This gives us log8(4x2+8x)log83=3\frac{\log_8(4x^2 + 8x)}{\log_8 3} = 3.

    Cross-multiplying, we have log8(4x2+8x)=3log83\log_8(4x^2 + 8x) = 3\log_8 3.

    By the power rule, we can simplify as log8(4x2+8x)=log833=log827\log_8(4x^2 + 8x) = \log_8 3^3 = \log_8 27.

  • Step 3: Solve for x x

    Since the logarithms are the same base, we equate the arguments: 4x2+8x=274x^2 + 8x = 27.

    Rearranging gives the quadratic equation 4x2+8x27=04x^2 + 8x - 27 = 0.

    We solve this quadratic equation using the quadratic formula: x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=4 a = 4, b=8 b = 8, and c=27 c = -27.

    Thus, x=8±8244(27)24 x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 4 \cdot (-27)}}{2 \cdot 4}.

    Calculating further, x=8±64+4328 x = \frac{-8 \pm \sqrt{64 + 432}}{8}.

    This simplifies to x=8±4968 x = \frac{-8 \pm \sqrt{496}}{8}.

    Simplifying 496=431\sqrt{496} = 4\sqrt{31}, the equation becomes:

    x=8±4318 x = \frac{-8 \pm 4\sqrt{31}}{8}.

    Further simplifying gives us two solutions: x=1±312 x = -1 \pm \frac{\sqrt{31}}{2}.

Given that x x must be positive for the original logarithms to be valid, we take x=1+312 x = -1 + \frac{\sqrt{31}}{2}.

Therefore, the correct solution is x=1+312 x = -1+\frac{\sqrt{31}}{2} .

Answer

1+312 -1+\frac{\sqrt{31}}{2}

Exercise #9

Is inequality true?

\log_{\frac{1}{4}}9<\frac{\log_57}{\log_5\frac{1}{4}}

Video Solution

Step-by-Step Solution

To solve this problem, we will rewrite both sides of the inequality with the change of base formula and evaluate them:

  • Step 1: Rewrite both logarithms using common base.
    Using the change of base formula, log149=log29log214 \log_{\frac{1}{4}}9 = \frac{\log_29}{\log_2\frac{1}{4}} and log57log514\frac{\log_57}{\log_5\frac{1}{4}} can also be rewritten similarly.
  • Step 2: Recognize that changing everything to base 2 will be beneficial.
    log2(1/4)=log241=2\log_2 (1/4) = \log_2 4^{-1} = -2.
  • Step 3: Evaluate left side.
    log149=log292=log292 \log_{\frac{1}{4}}9 = \frac{\log_2 9}{-2} = -\frac{\log_2 9}{2} .
  • Step 4: Evaluate right side using the same base.
    log57log514=log272 \frac{\log_57}{\log_5\frac{1}{4}} = -\frac{\log_2 7}{2} , where log24=2-\log_2 4 = 2.
  • Step 5: Compare both expressions
    log292<log272=>log29<log27=>9<7-\frac{\log_2 9}{2} < -\frac{\log_2 7}{2} => \log_2 9 < \log_2 7 => 9 < 7.
  • Step 6: Since 9>79 > 7, convert the logarithmic expressions back into log14\log_{\frac{1}{4}}.
    log147\log_{\frac{1}{4}}7 is smaller than log149\log_{\frac{1}{4}}9, so inequation holds.

After comparing these expressions, we see that log149<log147 \log_{\frac{1}{4}}9 < \log_{\frac{1}{4}}7 indeed holds true.

Therefore, the solution is: Yes, since: log149<log147 \log_{\frac{1}{4}}9 < \log_{\frac{1}{4}}7 .

Answer

Yes, since:

\log_{\frac{1}{4}}9<\log_{\frac{1}{4}}7

Exercise #10

log45+log423log42= \frac{\log_45+\log_42}{3\log_42}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Combine the logarithms in the numerator.
  • Step 2: Simplify the expression using logarithmic properties.

Now, let's work through each step:

Step 1: Combine the logarithms in the numerator using the sum of logarithms property:

log45+log42=log4(5×2)=log410.\log_45 + \log_42 = \log_4(5 \times 2) = \log_4 10.

Step 2: Simplify the entire expression log4103log42\frac{\log_4 10}{3\log_4 2}:

log4103log42=log410log423=log410log48=log810.\frac{\log_4 10}{3 \log_4 2} = \frac{\log_4 10}{\log_4 2^3} = \frac{\log_4 10}{\log_4 8} = \log_8 10.

This follows from the property that logbxlogby=logyx\frac{\log_b x}{\log_b y} = \log_y x.

Therefore, the solution to the problem is log810\log_8 10.

Answer

log810 \log_810

Exercise #11

2log78log74+1log43×log29= \frac{2\log_78}{\log_74}+\frac{1}{\log_43}\times\log_29=

Video Solution

Step-by-Step Solution

To solve the problem 2log78log74+1log43×log29\frac{2\log_7 8}{\log_7 4} + \frac{1}{\log_4 3} \times \log_2 9, we will apply various logarithmic rules:

Step 1: Simplify 2log78log74\frac{2\log_7 8}{\log_7 4}.

  • Using the power property, log78=log723=3log72\log_7 8 = \log_7 2^3 = 3\log_7 2.
  • Similarly, log74=log722=2log72\log_7 4 = \log_7 2^2 = 2\log_7 2.
  • The expression becomes 2×3log722log72=3\frac{2 \times 3\log_7 2}{2\log_7 2} = 3.

Step 2: Simplify 1log43×log29\frac{1}{\log_4 3} \times \log_2 9.

  • 1log43=log34\frac{1}{\log_4 3} = \log_3 4, by inversion.
  • log29\log_2 9 can be expressed as log232=2log23\log_2 3^2 = 2\log_2 3.
  • The product becomes log34×2log23=2log24log23×log23\log_3 4 \times 2\log_2 3 = 2 \cdot \frac{\log_2 4}{\log_2 3} \times \log_2 3.
  • Since log24=2\log_2 4 = 2, this simplifies to 2×21=42 \times \frac{2}{1} = 4.

Step 3: Add the results from Steps 1 and 2:
3+4=73 + 4 = 7.

Therefore, the solution to the problem is 77.

Answer

7 7

Exercise #12

log311log34+1ln32log3= \frac{\log_311}{\log_34}+\frac{1}{\ln3}\cdot2\log3=

Video Solution

Step-by-Step Solution

To solve this problem, we'll proceed as follows:

  • Step 1: Rewrite each logarithmic expression using the change of base formula.
  • Step 2: Simplify the expressions using properties of logarithms.
  • Step 3: Identify the final expression.

Now, let's work through each step:

Step 1: We begin by converting each logarithm to the natural logarithm base.
Using the change of base formula, we have:

log311log34=ln11ln3ln4ln3=ln11ln4 \frac{\log_3 11}{\log_3 4} = \frac{\frac{\ln 11}{\ln 3}}{\frac{\ln 4}{\ln 3}} = \frac{\ln 11}{\ln 4}.

Step 2: Next, simplify the second expression:

1ln32log3=2 \frac{1}{\ln 3} \cdot 2\log 3 = 2.

This follows because log3\log 3 in natural logarithms converts to ln3\ln 3, and thus:

2ln3ln3=2 \frac{2\ln 3}{\ln 3} = 2.

Hence, our entire expression now is ln11ln4+2\frac{\ln 11}{\ln 4} + 2.

Step 3: Express 22 as a logarithm. Using the properties of logarithms:

2=loge22 = \log e^2, since lne=1\ln e = 1.

Therefore, the entire expression becomes:

ln11ln4+loge2 \frac{\ln 11}{\ln 4} + \log e^2.

By the properties of logarithms, this can also be expressed as:

log411+loge2 \log_4 11 + \log e^2.

Thus, the expression simplifies directly to:

log411+loge2 \log_4 11 + \log e^2.

Therefore, the solution to the problem is log411+loge2 \log_4 11 + \log e^2 .

Answer

log411+loge2 \log_411+\log e^2

Exercise #13

log76log71.53log721log82= \frac{\log_76-\log_71.5}{3\log_72}\cdot\frac{1}{\log_{\sqrt{8}}2}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the expression step-by-step, using algebraic rules for logarithms:

  • Step 1: Simplify the numerator log76log71.53log72 \frac{\log_7 6 - \log_7 1.5}{3 \log_7 2}

First, apply the logarithm quotient rule to the numerator:
log76log71.5=log7(61.5)=log74 \log_7 6 - \log_7 1.5 = \log_7 \left(\frac{6}{1.5}\right) = \log_7 4

  • Step 2: Simplify 3log72 3 \log_7 2 in the denominator.

The denominator is 3×log72 3 \times \log_7 2 .

  • Step 3: Address the next part of the expression: 1log82 \frac{1}{\log_{\sqrt{8}} 2} .

By changing the base, use log82=log8212 \log_{\sqrt{8}} 2 = \frac{\log_{8} 2}{\frac{1}{2}} because 8=81/2 \sqrt{8} = 8^{1/2} . Now, log82=13 \log_8 2 = \frac{1}{3} as 81/3=2 8^{1/3} = 2 . So, log82=log281/2=1/31/2=23 \log_{\sqrt{8}} 2 = \frac{\log_2 8}{1/2} = \frac{1/3}{1/2} = \frac{2}{3} .

Therefore, the reciprocal is 1log82=32 \frac{1}{\log_{\sqrt{8}} 2} = \frac{3}{2} .

  • Step 4: Combine and simplify the expression.

The complete logarithmic expression simplifies as follows:
log743log7232=log7(22)3log7232 \frac{\log_7 4}{3 \log_7 2} \cdot \frac{3}{2} = \frac{\log_7 (2^2)}{3 \log_7 2} \cdot \frac{3}{2}

Using the power rule, log74=2log72 \log_7 4 = 2 \log_7 2 . Plug this back into the expression:
2log723log7232 \frac{2 \log_7 2}{3 \log_7 2} \cdot \frac{3}{2}
The log72 \log_7 2 cancels within the fraction, and we are left with 23×32=1 \frac{2}{3} \times \frac{3}{2} = 1 .

Therefore, the solution to the problem is 1 1 .

Answer

1 1

Exercise #14

3(ln4ln5log57+1log65)= -3(\frac{\ln4}{\ln5}-\log_57+\frac{1}{\log_65})=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Apply the change-of-base formula to ln4ln5\frac{\ln 4}{\ln 5}.

  • Step 2: Apply the reciprocal property to 1log65\frac{1}{\log_6 5}.

  • Step 3: Use the subtraction property of logs to simplify the expression.

  • Step 4: Combine the simplified logarithms and multiply by -3.

Now, let's work through each step:

Step 1: Using the change-of-base formula, we have ln4ln5=log54\frac{\ln 4}{\ln 5} = \log_5 4.

Step 2: Apply the reciprocal property to the third term: 1log65=log56\frac{1}{\log_6 5} = \log_5 6.

Step 3: Substitute into the expression: 3(log54log57+log56)-3(\log_5 4 - \log_5 7 + \log_5 6).

Step 4: Combine terms using the properties of logs: log54log57+log56=log5(4×67)\log_5 4 - \log_5 7 + \log_5 6 = \log_5 \left(\frac{4 \times 6}{7}\right).

Step 5: Simplify to get: log5(247)\log_5 \left(\frac{24}{7}\right).

Multiply by -3: 3(log5(247))=3log5(724) -3(\log_5 (\frac{24}{7})) = 3\log_5 \left(\frac{7}{24}\right) .

Therefore, the solution to the problem is 3log5724 3\log_5 \frac{7}{24} .

Answer

3log5724 3\log_5\frac{7}{24}

Exercise #15

What is the domain of X so that the following is satisfied:

\frac{\log_{\frac{1}{8}}2x}{\log_{\frac{1}{8}}4}<\log_4(5x-2)

Video Solution

Step-by-Step Solution

To solve the inequality log18(2x)log18(4)<log4(5x2) \frac{\log_{\frac{1}{8}}(2x)}{\log_{\frac{1}{8}}(4)} < \log_4(5x - 2) , we proceed as follows:

  • Step 1: Convert all logarithms to a common base using the change of base formula:

    log18(a)=log(a)log(18)\log_{\frac{1}{8}}(a) = \frac{\log(a)}{\log(\frac{1}{8})} and log4(b)=log(b)log(4)\log_4(b) = \frac{\log(b)}{\log(4)}.

  • Step 2: Simplify the inequality using these conversions.

    The left expression becomes log(2x)log(18)÷log(4)log(18)=log(2x)log(4)\frac{\log(2x)}{\log(\frac{1}{8})} \div \frac{\log(4)}{\log(\frac{1}{8})} = \frac{\log(2x)}{\log(4)}.

  • Step 3: The inequality simplifies to log(2x)log(4)<log(5x2)log(4)\frac{\log(2x)}{\log(4)} < \frac{\log(5x - 2)}{\log(4)}.
  • Step 4: Since both sides are divided by the positive log(4)\log(4), the inequality remains:

    log(2x)<log(5x2)\log(2x) < \log(5x - 2).

  • Step 5: Remove logs since the logarithms are to the same base, leading to 2x<5x22x < 5x - 2.
  • Step 6: Solve the inequality 2x<5x22x < 5x - 2. Rearrange terms: 2<3x2 < 3x.
  • Step 7: Divide both sides by 3 to solve for xx: 23<x\frac{2}{3} < x.
  • Step 8: Validate (5x2)>0(5x - 2) > 0 implies x>25x > \frac{2}{5}, which is consistent with our solution.

Therefore, the solution to the problem is 23<x \frac{2}{3} < x , which is choice 1.

Answer

\frac{2}{3} < x

Topics learned in later sections

  1. Logarithms