Examples with solutions for Surface Area of a Cuboid: Resulting in a quadratic equation

Exercise #1

Look at the cuboid in the diagram.

Its surface area is 135.5.

Calculate X.

X+5X+2X+3

Video Solution

Step-by-Step Solution

To solve this problem, let's determine the value of X X using the given dimensions of the cuboid and its surface area:

  • The dimensions of the cuboid are X+5 X+5 , X+2 X+2 , and X+3 X+3 .
  • Surface area formula: SA=2(lw+lh+wh) \text{SA} = 2(lw + lh + wh) .
  • Substitute l=X+5 l = X+5 , w=X+2 w = X+2 , and h=X+3 h = X+3 into the equation to get:

Surface Area, SA=2((X+5)(X+2)+(X+5)(X+3)+(X+2)(X+3))=135.5 \text{SA} = 2((X+5)(X+2) + (X+5)(X+3) + (X+2)(X+3)) = 135.5 .

First, simplify each term separately:

  • (X+5)(X+2)=X2+2X+5X+10=X2+7X+10(X+5)(X+2) = X^2 + 2X + 5X + 10 = X^2 + 7X + 10.
  • (X+5)(X+3)=X2+3X+5X+15=X2+8X+15(X+5)(X+3) = X^2 + 3X + 5X + 15 = X^2 + 8X + 15.
  • (X+2)(X+3)=X2+3X+2X+6=X2+5X+6(X+2)(X+3) = X^2 + 3X + 2X + 6 = X^2 + 5X + 6.

Next, substitute these into the surface area formula:

2((X2+7X+10)+(X2+8X+15)+(X2+5X+6))=135.5 2\left((X^2 + 7X + 10) + (X^2 + 8X + 15) + (X^2 + 5X + 6)\right) = 135.5

Combine like terms:

2(3X2+20X+31)=135.5 2(3X^2 + 20X + 31) = 135.5

Distribute the 2:

6X2+40X+62=135.5 6X^2 + 40X + 62 = 135.5

Subtract 135.5 from both sides to set the equation to zero:

6X2+40X+62135.5=0 6X^2 + 40X + 62 - 135.5 = 0

Simplify to:

6X2+40X73.5=0 6X^2 + 40X - 73.5 = 0

Now, solve this quadratic equation using the quadratic formula: X=b±b24ac2a X = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} .

Here, a=6 a = 6 , b=40 b = 40 , c=73.5 c = -73.5 .

Calculate the discriminant:

b24ac=40246(73.5) b^2 - 4ac = 40^2 - 4 \cdot 6 \cdot (-73.5)

=1600+1764=3364 = 1600 + 1764 = 3364

Taking the square root of the discriminant:

3364=58 \sqrt{3364} = 58

Now solve for X X :

X=40±5812 X = \frac{{-40 \pm 58}}{12}

Calculate the two possible values:

X1=40+5812=1812=1.5 X_1 = \frac{{-40 + 58}}{12} = \frac{18}{12} = 1.5

X2=405812 X_2 = \frac{{-40 - 58}}{12} (which results in a negative and thus non-viable solution given the dimensions context).

Only the positive value X=1.5 X = 1.5 makes sense in the context of cuboid dimensions.

Therefore, the solution to the problem is X=1.5 X = 1.5 .

Answer

1.5

Exercise #2

Calculate x given that the surface area of the cuboid is 250 cm².

X+3X+3X+355512-X

Video Solution

Step-by-Step Solution

To solve the problem, follow these steps:

  • Step 1: Use the formula for the surface area of a cuboid:
    S=2(lw+lh+wh) S = 2(lw + lh + wh) where l=x+3 l = x+3 , w=12x w = 12-x , h=5 h = 5 .
  • Step 2: Substitute the dimensions into the formula:
    S=2((x+3)(12x)+(x+3)5+(12x)5) S = 2((x+3)(12-x) + (x+3) \cdot 5 + (12-x) \cdot 5) .
  • Step 3: Calculate each term:
    - (x+3)(12x)=x(12x)+3(12x)=12xx2+363x=x2+9x+36 (x+3)(12-x) = x(12-x) + 3(12-x) = 12x - x^2 + 36 - 3x = -x^2 + 9x + 36 .
    - (x+3)5=5x+15 (x+3) \cdot 5 = 5x + 15 .
    - (12x)5=605x (12-x) \cdot 5 = 60 - 5x .
  • Step 4: Plug in these results into the surface area formula:
    S=2((x2+9x+36)+(5x+15)+(605x)) S = 2((-x^2 + 9x + 36) + (5x + 15) + (60 - 5x)) .
  • Step 5: Simplify inside the parentheses:
    x2+9x+36+5x+15+605x=x2+9x+36+15+60=x2+9x+111 -x^2 + 9x + 36 + 5x + 15 + 60 - 5x = -x^2 + 9x + 36 + 15 + 60 = -x^2 + 9x + 111 .
  • Step 6: Complete the simplification:
    S=2(x2+9x+111) S = 2(-x^2 + 9x + 111) .
  • Step 7: Solve for when S=250 S = 250 cm²:
    250=2(x2+9x+111) 250 = 2(-x^2 + 9x + 111) .
  • Step 8: Simplify and rearrange:
    250=2x2+18x+222 250 = -2x^2 + 18x + 222 , then
    2x218x+28=0 2x^2 - 18x + 28 = 0 (after isolating zero on one side and simplifying).
  • Step 9: Factor or use the quadratic formula to solve this equation:
    The equation factors to 2(x29x+14)=0 2(x^2 - 9x + 14) = 0 ,
    Then factor x29x+14=(x7)(x2)=0 x^2 - 9x + 14 = (x-7)(x-2) = 0 .
  • Step 10: Solve for x x :
    x=7 x = 7 or x=2 x = 2 .
  • Step 11: Verify that both values provide valid dimensions and confirm surface area.

The values of x x that satisfy the condition are x=2 x = 2 and x=7 x = 7 .

Answer

2 , 7