Examples with solutions for Variables and Algebraic Expressions: Unlike denominators with variables

Exercise #1

23a+14b+18c+14a=? \frac{2}{3}a+\frac{1}{4}b+\frac{1}{8}c+\frac{1}{4}a=\text{?}

Video Solution

Step-by-Step Solution

To solve this algebraic expression problem, we proceed with the following steps:

  • Step 1: Identify the Like Terms
  • Step 2: Combine the Like Terms
  • Step 3: Present the Final Simplified Expression

Step 1: Identify the Like Terms:
The expression given is 23a+14b+18c+14a \frac{2}{3}a + \frac{1}{4}b + \frac{1}{8}c + \frac{1}{4}a . Notice that the terms 23a \frac{2}{3}a and 14a \frac{1}{4}a are like terms involving aa.

Step 2: Combine the Like Terms:
To combine 23a \frac{2}{3}a and 14a \frac{1}{4}a , we need a common denominator. The least common denominator of 3 and 4 is 12.
Rewriting these fractions with a denominator of 12 gives: 23a=812a \frac{2}{3}a = \frac{8}{12}a , and 14a=312a \frac{1}{4}a = \frac{3}{12}a .
Adding these gives: 812a+312a=1112a \frac{8}{12}a + \frac{3}{12}a = \frac{11}{12}a .

Step 3: Present the Final Simplified Expression:
Now, substitute back the simplified terms involving aa into the expression: 1112a+14b+18c \frac{11}{12}a + \frac{1}{4}b + \frac{1}{8}c .
Therefore, the simplified expression is 1112a+14b+18c \frac{11}{12}a + \frac{1}{4}b + \frac{1}{8}c .

This matches with choice 3 in the provided options.

The final solution is: 1112a+14b+18c \frac{11}{12}a + \frac{1}{4}b + \frac{1}{8}c .

Answer

1112a+14b+18c \frac{11}{12}a+\frac{1}{4}b+\frac{1}{8}c

Exercise #2

25x+43y+79x+34y=? \frac{2}{5}x+\frac{4}{3}y+\frac{7}{9}x+\frac{3}{4}y=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the given expression and separate like terms.
  • Step 2: Find a common denominator for terms with same variables.
  • Step 3: Add the fractions for each group of like terms.
  • Step 4: Simplify the expression to find the final result.

Now, let's work through each step:
Step 1: The expression is 25x+43y+79x+34y\frac{2}{5}x + \frac{4}{3}y + \frac{7}{9}x + \frac{3}{4}y. Group like terms together:
(25x+79x)+(43y+34y)(\frac{2}{5}x + \frac{7}{9}x) + (\frac{4}{3}y + \frac{3}{4}y).

Step 2: For (25x+79x)(\frac{2}{5}x + \frac{7}{9}x), find a common denominator for the fractions 2/52/5 and 7/97/9, which is 45.
Convert 25\frac{2}{5} to 1845\frac{18}{45} and 79\frac{7}{9} to 3545\frac{35}{45}.

Step 3: Add the fractions for xx:
1845x+3545x=5345x\frac{18}{45}x + \frac{35}{45}x = \frac{53}{45}x.

For (43y+34y)(\frac{4}{3}y + \frac{3}{4}y), find a common denominator, which is 12.
Convert 43\frac{4}{3} to 1612\frac{16}{12} and 34\frac{3}{4} to 912\frac{9}{12}.

Add the fractions for yy:
1612y+912y=2512y\frac{16}{12}y + \frac{9}{12}y = \frac{25}{12}y.

Step 4: Combine results to express the simplified form:
5345x+2512y\frac{53}{45}x + \frac{25}{12}y.

As mixed numbers, the solution becomes:
1845x+2112y1\frac{8}{45}x + 2\frac{1}{12}y.

Therefore, the solution to the problem is 1845x+2112y1\frac{8}{45}x + 2\frac{1}{12}y.

Answer

1845x+2112y 1\frac{8}{45}x+2\frac{1}{12}y

Exercise #3

47x+57y+34x+89y=? \frac{4}{7}x+\frac{5}{7}y+\frac{3}{4}x+\frac{8}{9}y=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll proceed as follows:

  • Step 1: Group the like terms involving x x and y y separately.
  • Step 2: Find a common denominator for the terms involving x x .
  • Step 3: Add the fractions to simplify the x x terms.
  • Step 4: Find a common denominator for the terms involving y y .
  • Step 5: Add the fractions to simplify the y y terms.
  • Step 6: Combine the simplified terms for x x and y y .

Now, let's perform these steps in detail:
Step 1: Identify and group the terms:
(47x+34x) \left(\frac{4}{7}x + \frac{3}{4}x\right) and (57y+89y) \left(\frac{5}{7}y + \frac{8}{9}y\right) .

Step 2: Find a common denominator for the x x -terms:
The denominators are 7 and 4. The least common denominator (LCD) is 28.

Step 3: Add the x x -terms:
47x=4428x=1628x\frac{4}{7}x = \frac{4 \cdot 4}{28}x = \frac{16}{28}x
34x=3728x=2128x\frac{3}{4}x = \frac{3 \cdot 7}{28}x = \frac{21}{28}x
Adding them gives 1628x+2128x=3728x=1928x\frac{16}{28}x + \frac{21}{28}x = \frac{37}{28}x = 1\frac{9}{28}x.

Step 4: Find a common denominator for the y y -terms:
The denominators are 7 and 9. The LCD is 63.

Step 5: Add the y y -terms:
57y=5963y=4563y\frac{5}{7}y = \frac{5 \cdot 9}{63}y = \frac{45}{63}y
89y=8763y=5663y\frac{8}{9}y = \frac{8 \cdot 7}{63}y = \frac{56}{63}y
Adding them gives 4563y+5663y=10163y=13863y\frac{45}{63}y + \frac{56}{63}y = \frac{101}{63}y = 1\frac{38}{63}y.

Step 6: Combine the simplified terms:
The final expression is 1928x+13863y 1\frac{9}{28}x + 1\frac{38}{63}y .

Therefore, the solution to the problem is 1928x+13863y 1\frac{9}{28}x + 1\frac{38}{63}y .

Answer

1928x+13863y 1\frac{9}{28}x+1\frac{38}{63}y

Exercise #4

3ba138a+58b+418m+910a+23m=? 3\frac{b}{a}\cdot1\frac{3}{8}a+\frac{5}{8}b+\frac{4}{18}m+\frac{9}{10}a+\frac{2}{3}m=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the algebraic expression and combine like terms:

  • Convert mixed numbers to improper fractions and simplify.
  • Simplify each part of the expression.
  • Combine like terms by variable type.

Let's go through each step:

First, convert and simplify 3ba138a3\frac{b}{a} \cdot 1\frac{3}{8}a: - Change 1381\frac{3}{8} to an improper fraction: 138=1181\frac{3}{8} = \frac{11}{8}.

Thus, multiply: 3ba118a=33b83\frac{b}{a} \cdot \frac{11}{8}a = \frac{33b}{8}.

Then, look at each term:

  • The expression now consists of: 33b8+58b+910a+418m+23m \frac{33b}{8} + \frac{5}{8}b + \frac{9}{10}a + \frac{4}{18}m + \frac{2}{3}m .
  • Simplify each component: - 418m=29m\frac{4}{18}m = \frac{2}{9}m (reducing the fraction).
  • Now, add like terms: - Combine terms involving bb: 33b8+5b8=33b+5b8=38b8=434b\frac{33b}{8} + \frac{5b}{8} = \frac{33b + 5b}{8} = \frac{38b}{8} = 4\frac{3}{4}b.
  • There are no like terms with aa, so 910a\frac{9}{10}a remains unchanged.
  • Combine terms involving mm: 29m+23m=2m9+6m9=8m9\frac{2}{9}m + \frac{2}{3}m = \frac{2m}{9} + \frac{6m}{9} = \frac{8m}{9}.

After the simplification, the expression becomes: 434b+910a+89m4\frac{3}{4}b + \frac{9}{10}a + \frac{8}{9}m.

Therefore, the solution to the problem is 434b+910a+89m4\frac{3}{4}b + \frac{9}{10}a + \frac{8}{9}m.

Answer

434b+910a+89m 4\frac{3}{4}b+\frac{9}{10}a+\frac{8}{9}m

Exercise #5

3z4+14m+1213z45m+17z=? \frac{3z}{4}+\frac{1}{4}m+\frac{12}{13}z\cdot\frac{4}{5}m+\frac{1}{7}z=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Identify and combine like terms involving z z .

  • Simplify the term involving both z z and m m .

  • Combine and simplify fractions.

Now, let us solve the expression step-by-step:

Given expression: 3z4+14m+1213z45m+17z \frac{3z}{4} + \frac{1}{4}m + \frac{12}{13}z \cdot \frac{4}{5}m + \frac{1}{7}z

Step 1: Combine like terms for z z .

Terms involving z z are: 3z4 \frac{3z}{4} , 17z \frac{1}{7}z .

To combine these, we need a common denominator. The least common multiple of 4 and 7 is 28:

3z4=21z28 \frac{3z}{4} = \frac{21z}{28} and 1z7=4z28 \frac{1z}{7} = \frac{4z}{28} .

Add these: 21z28+4z28=25z28 \frac{21z}{28} + \frac{4z}{28} = \frac{25z}{28} .

Step 2: Simplify the term involving both z z and m m .

1213z45m=4865zm \frac{12}{13}z \cdot \frac{4}{5}m = \frac{48}{65}zm .

This expression is already in its simplest form.

Step 3: Write the whole expression in simplified form:

25z28+14m+4865zm \frac{25z}{28} + \frac{1}{4}m + \frac{48}{65}zm .

Therefore, the simplified expression is: 2528z+14m+4865zm \frac{25}{28}z + \frac{1}{4}m + \frac{48}{65}zm .

Answer

2528z+14m+4865zm \frac{25}{28}z+\frac{1}{4}m+\frac{48}{65}zm

Exercise #6

(34+2a)(8a+9ba)(5+a)(32a+b)=? (\frac{3}{4}+2a)(8a+9ba)-(5+a)(\frac{3}{2}a+b)=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the expression step by step using the distributive law.

Step 1: Apply the distributive property to the first part of the expression: (34+2a)(8a+9ba) (\frac{3}{4} + 2a)(8a + 9ba) .

  • Distribute 34 \frac{3}{4} to 8a 8a and 9ba 9ba : 34×8a=6a \frac{3}{4} \times 8a = 6a and 34×9ba=274ab \frac{3}{4} \times 9ba = \frac{27}{4}ab .
  • Distribute 2a 2a to 8a 8a and 9ba 9ba : 2a×8a=16a2 2a \times 8a = 16a^2 and 2a×9ba=18a2b 2a \times 9ba = 18a^2b .

The first part expands to: 6a+274ab+16a2+18a2b 6a + \frac{27}{4}ab + 16a^2 + 18a^2b .

Step 2: Apply the distributive property to the second part of the expression: (5+a)(32a+b) (5 + a)(\frac{3}{2}a + b) .

  • Distribute 5 5 to 32a \frac{3}{2}a and b b : 5×32a=152a 5 \times \frac{3}{2}a = \frac{15}{2}a and 5×b=5b 5 \times b = 5b .
  • Distribute a a to 32a \frac{3}{2}a and b b : a×32a=32a2 a \times \frac{3}{2}a = \frac{3}{2}a^2 and a×b=ab a \times b = ab .

The second part expands to: 152a+5b+32a2+ab \frac{15}{2}a + 5b + \frac{3}{2}a^2 + ab .

Step 3: Simplify the expression by subtracting the second part from the first:

  • Combine like terms: 6a152a 6a - \frac{15}{2}a and 274abab \frac{27}{4}ab - ab .
  • Subtract constants and like terms: - 6a152a=32a 6a - \frac{15}{2}a = -\frac{3}{2}a . - 274abab=274ab44ab=234ab \frac{27}{4}ab - ab = \frac{27}{4}ab - \frac{4}{4}ab = \frac{23}{4}ab . - (16a232a2)+(18a2b5b)(16a^2 - \frac{3}{2}a^2) + (18a^2b - 5b).

The full simplified expression is: 32a+234ab+(16a232a2)+(18a2b5b) -\frac{3}{2}a + \frac{23}{4}ab + \left(16a^2 - \frac{3}{2}a^2\right) + (18a^2b - 5b) .

Recognize that 16a232a2=322a232a2=292a2 16a^2 - \frac{3}{2}a^2 = \frac{32}{2}a^2 - \frac{3}{2}a^2 = \frac{29}{2}a^2 , the final answer is:

The simplified expression is: 32a+534ab+1412a2+(18a25)b -\frac{3}{2}a + 5\frac{3}{4}ab + 14\frac{1}{2}a^2 + (18a^2-5)b .

Answer

32a+534ab+1412a2+(18a25)b -\frac{3}{2}a+5\frac{3}{4}ab+14\frac{1}{2}a^2+(18a^2-5)b