Examples with solutions for Increasing and Decreasing Domain of a Parabola: Standard representation

Exercise #1

Find the domain of increase of the function:

y=3x26x+4 y=3x^2-6x+4

Video Solution

Step-by-Step Solution

The function given is y=3x26x+4 y = 3x^2 - 6x + 4 .

First, let's find the derivative of the function, which will help us determine the intervals of increase.

The derivative is given by f(x)=ddx(3x26x+4)=6x6 f'(x) = \frac{d}{dx}(3x^2 - 6x + 4) = 6x - 6 .

Next, find where the derivative is zero to locate critical points. Solve 6x6=0 6x - 6 = 0 to get:

6x=6 6x = 6
x=1 x = 1

The critical point is x=1 x = 1 . This is where the function changes from decreasing to increasing since quadratic functions have one axis of symmetry and a>0 a > 0 : indicating a parabola opening upwards.

To determine the interval of increase, analyze the sign of f(x) f'(x) :

  • For x>1 x > 1 , 6x6>0 6x - 6 > 0 which implies f(x)>0 f'(x) > 0 , so the function is increasing.
  • For x<1 x < 1 , 6x6<0 6x - 6 < 0 which implies f(x)<0 f'(x) < 0 , so the function is decreasing.

Thus, the domain of increase for the function is when x>1 x > 1 .

The correct answer is therefore x>1 x > 1 .

Answer

x>1 x > 1

Exercise #2

Find the domain of decrease of the function:

y=x2+2x+35 y=-x^2+2x+35

Video Solution

Step-by-Step Solution

To determine the domain over which the quadratic function y=x2+2x+35 y = -x^2 + 2x + 35 is decreasing, we proceed by identifying the vertex of the parabola.

Given the form y=ax2+bx+c y = ax^2 + bx + c , we have a=1 a = -1 , b=2 b = 2 , and c=35 c = 35 . The x-coordinate of the vertex can be found using the formula:

x=b2a x = -\frac{b}{2a}

Substituting b=2 b = 2 and a=1 a = -1 into the formula, we calculate:

x=22×(1)=22=1 x = -\frac{2}{2 \times (-1)} = -\frac{2}{-2} = 1

The vertex of the parabola occurs at x=1 x = 1 . Since the function is a downward-opening parabola (as indicated by the negative coefficient of x2 -x^2 ), the function decreases for all x x values greater than the x-coordinate of the vertex.

Therefore, the domain of decrease for the function is x>1 x > 1 .

This matches the answer choice:

x>1 x > 1

Answer

x>1 x > 1

Exercise #3

Find the domain of increase of the function:

y=x2+2x+35 y=-x^2+2x+35

Video Solution

Step-by-Step Solution

To find the domain of increase for the function y=x2+2x+35 y = -x^2 + 2x + 35 , let's determine the vertex first.

  • Step 1: Identify coefficients in the quadratic equation. Here, a=1 a = -1 , b=2 b = 2 , and c=35 c = 35 .
  • Step 2: Use the vertex formula x=b2a x = -\frac{b}{2a} to find the x-coordinate of the vertex.

Plug in the values for b b and a a :

x=22×1=22=1 x = -\frac{2}{2 \times -1} = -\frac{2}{-2} = 1

The x-coordinate of the vertex is x=1 x = 1 .

Since the coefficient a a is negative, this means the parabola opens downwards. A parabola opening downward will increase until it reaches the vertex, then start decreasing.

Therefore, the domain on which the function is increasing is x<1 x < 1 .

Therefore, the solution to the problem is x<1 x < 1 .

Answer

x<1 x < 1

Exercise #4

Find the domain of increase of the function:

y=2x2+16x18 y=2x^2+16x-18

Video Solution

Answer

x>9 x > -9