Examples with solutions for Addition, Subtraction, Multiplication and Division: Using parentheses

Exercise #1

0.6×(1+2)= 0.6\times(1+2)=

Video Solution

Step-by-Step Solution

The problem to be solved is 0.6×(1+2)= 0.6\times(1+2)= . Let's go through the solution step by step, following the order of operations.


Step 1: Evaluate the expression inside the parentheses.
Inside the parentheses, we have 1+21+2. According to the order of operations, we first solve expressions in parentheses. Thus, we have:

1+2=3 1 + 2 = 3

So, the expression simplifies to 0.6×3 0.6\times3 .


Step 2: Perform the multiplication.
With the parentheses removed, we now carry out the multiplication:

0.6×3=1.8 0.6 \times 3 = 1.8

Thus, the final answer is 1.8 1.8 .

Answer

1.8

Exercise #2

13+(21)= \frac{1}{3}+(2-1)=

Video Solution

Step-by-Step Solution

To solve the expression 13+(21) \frac{1}{3}+(2-1) , we need to follow the order of operations, often abbreviated as PEMDAS (Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)). This problem primarily involves parentheses and addition.

We'll start by solving the expression within the parentheses:

  • The expression inside the parentheses is (21) (2-1) . Subtracting, we get:

21=1 2 - 1 = 1

After solving the parentheses, the expression becomes:

13+1 \frac{1}{3} + 1

Next, we perform the addition:

  • Since 1 1 can be written as 33 \frac{3}{3} to have a common denominator with 13 \frac{1}{3} , we add:

13+33=1+33=43 \frac{1}{3} + \frac{3}{3} = \frac{1+3}{3} = \frac{4}{3}

The fraction 43 \frac{4}{3} can also be expressed as a mixed number:

  • 43=113 \frac{4}{3} = 1 \frac{1}{3} (where 1 1 is the whole number and 13 \frac{1}{3} is the fractional part)

Thus, the correct answer is 113 1\frac{1}{3} .

Answer

113 1\frac{1}{3}

Exercise #3

0.4×(3+1)= 0.4 \times (3+1) =

Step-by-Step Solution

First, calculate the expression inside the parentheses: 3+1 3 + 1 equals 4 4 .

Then multiply 0.4 0.4 by 4 4 to get 1.6 1.6 .

Answer

1.6