Adjacent Angles: Identifying Intersecting Lines in Geometric Diagram

Question

Does the diagram show an adjacent angle?

Video Solution

Solution Steps

00:00 Determine whether the angles shown in the drawing are adjacent
00:03 The adjacent angles are supplementary to one another forming a linear pair
00:06 Here is the solution

Step-by-Step Solution

To determine if the diagram shows adjacent angles, we need to analyze the geometric arrangement shown:

  • Step 1: Identify the common vertex.

    In the diagram, both the vertical line and the diagonal line intersect at a point. This intersection point serves as the common vertex for the angles in question, as they radiate outward from this shared point.

  • Step 2: Identify the common side.

    Adjacent angles must share a common side or arm. In the diagram, the vertical line acts as one common side for both angles, with one angle extending upwards and the other horizontally from the vertex.

  • Step 3: Ensure no overlap of interiors.

    It is equally essential to ensure that these two angles do not overlap. Each angle branches from the vertex in a different direction, maintaining distinct interiors.

By confirming the presence of a common vertex and a common side without overlap of the angle interiors, the angles satisfy the definition of being adjacent.

Therefore, the diagram does indeed show adjacent angles.

Consequently, the correct answer is Yes.

Answer

Yes