Angles In Parallel Lines

🏆Practice angles in parallel lines

Angles on Parallel Lines

If we add a third line that intersects the two parallel lines (those lines that could never cross), we will obtain various types of angles.
To classify these angles we must observe if they are:
above the line - the pink part
below the line - the light blue part
to the right of the line - the red part
to the left of the line - the green part

A1 -Angles In Parallel Lines

Start practice

Test yourself on angles in parallel lines!

If one of two corresponding angles is a right angle, then the other angle will also be a right angle.

Practice more now

Corresponding angles

The corresponding angles located between parallel lines are equal.
They are called corresponding angles because:

  • they are on the same side of the transversal
  • they are on the same "floor" in relation to the line

Here are some examples of corresponding angles:

examples of corresponding angles

The two angles marked are on the left side and on the ground floor - they are corresponding and equivalent.


Vertically Opposite Angles

The vertically opposite angles that are located between parallel lines are equal.
They are called vertically opposite angles because:

  • They share the same vertex - they are located on the same vertex
  • They are opposite each other

Here are some examples of vertically opposite angles:

A2 - vertically opposite angles

The two marked angles are located on the same vertex and are opposite each other, therefore, they are vertically opposite angles.


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Adjacent Angles

The sum of adjacent angles located between parallel lines is equal to 180180.
They are called adjacent angles because:

  • They are next to each other
  • They are on the same line

Here are some examples of adjacent angles:

Here are some examples of adjacent angles

The two marked angles are on the same line - (diagonal) - and are next to each other, therefore, they are adjacent angles.


Alternate Angles

The alternate angles that are located between parallel lines are equal.
They are called alternate angles because:

  • they are not on the same side of the transversal
  • they are not on the same "level" in relation to the line

Here are some examples of alternate angles:

two pairs of alternate angles, one is painted red and the other blue

The two marked angles are on different "levels" and sides, therefore, they are alternate angles.


Do you know what the answer is?

Collateral angles

The sum of consecutive angles located between parallel lines is equal to 180180
They are called consecutive angles because:

  • they are on the same side of the transversal
  • but they are not on the same "level" in relation to the line

Here are some examples of consecutive angles:

A10  - External and internal collateral angles

The two marked angles are on the same side of the line, but at a different height, therefore, they are consecutive angles.
Observe: The angles painted in red in the illustration above are external consecutive angles since they are on the outer side of the parallel lines
The internal consecutive angles are on the inner side of the parallel lines:


Angles on Parallel Lines

Now to practice!

Give an example according to the illustration of:

examples of types of angles
  • Alternate angles
  • Corresponding angles
  • Vertically opposite angles
  • Adjacent angles
  • Consecutive interior angles
  • Consecutive exterior angles

Solution:

  • Examples of alternate angles 1,81, 8
    Both are on different sides and levels, therefore, they are alternate.
  • Examples of corresponding angles 8,48,4
    Both are on the same side and at the same level or floor, therefore, they are corresponding.
  • Examples of vertically opposite angles 1,41,4
    Both share the same vertex and are located opposite each other, therefore, they are vertically opposite angles.
  • Examples of adjacent angles 7,87,8
    Both are on the same line and are located next to each other, therefore, they are adjacent.
  • Examples of exterior alternate angles 1,71,7
    Both are on the same side, but not at the same level. In addition, they are located on the outside of the line, therefore, they are exterior alternate angles.
  • Examples of interior alternate angles 3,53,5
    Both are on the same side, but not at the same level. In addition, they are located on the inside of the line, therefore, they are interior alternate angles.

Another exercise:

What are the marked angles called in the illustration?

What are the marked angles called in the illustration

Solution

The marked angles are alternate
They are located on different sides and heights, therefore, they are alternate.


Another exercise:

What are the angles shown in the illustration called?

2- What are the angles shown in the illustration called

Solution

The indicated angles are consecutive
They are on the same side of the line, but at different heights, therefore, they are external consecutive angles.


Another exercise:

What are the angles shown in the illustration called?

4 -What are the angles shown in the illustration called

Solution

The indicated angles are adjacent
They are on the same blue line and are next to each other, therefore, they are adjacent angles.


Examples and exercises with solutions of right angles and parallels

Exercise #1

If one of two corresponding angles is a right angle, then the other angle will also be a right angle.

Video Solution

Step-by-Step Solution

To solve this problem, consider the following explanation:

When dealing with the concept of corresponding angles, we are typically considering two parallel lines cut by a transversal. The property of corresponding angles states that if two lines are parallel, then any pair of corresponding angles created where a transversal crosses these lines are equal.

Given the problem: If one of the corresponding angles is a right angle, we need to explore if this necessitates that the other corresponding angle is also a right angle.

Let’s proceed with the steps to solve the problem:

  • Step 1: Recognize that we are discussing corresponding angles formed by a transversal cutting through two parallel lines.
  • Step 2: Apply the property that corresponding angles are equal when lines are parallel. This means if one angle in such a pair is a right angle, then the other must be equal to it.
  • Step 3: Since a right angle measures 9090^\circ, the other corresponding angle must also measure 9090^\circ since they are equal by the property of corresponding angles.

Therefore, based on the equality of corresponding angles when lines are parallel, if one corresponding angle is a right angle, the other angle will also be a right angle.

The final conclusion for the problem is that the statement is True.

Answer

True

Exercise #2

It is possible for two adjacent angles to be right angles.

Video Solution

Step-by-Step Solution

To determine if it is possible for two adjacent angles to be right angles, we start by considering the definition of adjacent angles. Adjacent angles share a common side and a common vertex. We must think about this scenario in terms of the angles lying on a straight line or a flat plane.

A right angle is exactly 9090^\circ. Hence, if we have two right angles that are adjacent, their measures would be:

  • First angle: 9090^\circ
  • Second angle: 9090^\circ

When these two angles are adjacent, as defined in the problem, their sum is:

90+90=180 90^\circ + 90^\circ = 180^\circ

Angles that are adjacent along a straight line add up exactly to 180180^\circ. Therefore, it is indeed possible for two adjacent angles to be both 9090^\circ. This configuration simply means that these two angles lie along a straight line, dividing it into two right angles.

Hence, the statement is True.

Answer

True

Exercise #3

The sum of adjacent angles is 180 degrees.

Video Solution

Step-by-Step Solution

To solve this problem, let's first understand the concept of adjacent angles. Adjacent angles share a common vertex and a common side. When two adjacent angles are formed by two intersecting lines, they often form what is known as a linear pair.

According to the Linear Pair Postulate, if two angles form a linear pair, then the sum of these adjacent angles is 180180 degrees. This is because these angles lie on a straight line, effectively forming a straight angle, which measures 180180 degrees.

Let's apply this knowledge to the statement in the problem:
The statement says, "The sum of adjacent angles is 180 degrees." In the context of the Linear Pair Postulate, this is indeed correct as adjacent angles that create a linear pair sum to 180180 degrees.

Therefore, when the statement refers specifically to linear pairs, it is true.

Thus, the solution to the problem is True.

Answer

True

Exercise #4

If one vertically opposite angle is acute, then the other will be obtuse.

Video Solution

Step-by-Step Solution

To solve this problem, we need to understand the properties of vertically opposite angles:

  • Vertically opposite angles are the angles that are opposite each other when two lines intersect.
  • One key property of vertically opposite angles is that they are always equal in measure.
  • An acute angle is defined as an angle that is less than 9090^\circ.
  • An obtuse angle is defined as an angle that is greater than 9090^\circ.

Given that vertically opposite angles are equal, if one angle is acute, the opposite angle must also be acute. This contradicts the statement in the problem that if one is acute, the other will be obtuse.

Therefore, the correct analysis of the problem reveals that the statement is incorrect.

Thus, the solution to the problem is False.

Answer

False

Exercise #5

Does the drawing show an adjacent angle?

Video Solution

Step-by-Step Solution

Adjacent angles are angles whose sum together is 180 degrees.

In the attached drawing, it is evident that there is no angle of 180 degrees, and no pair of angles can create such a situation.

Therefore, in the drawing there are no adjacent angles.

Answer

Not true

Check your understanding
Start practice