Analyzing Domain and Sign of (1/3x + 1/6)(-x - 4.2): Complete Solution

Question

Find the positive and negative domains of the following function:

y=(13x+16)(x415) y=\left(\frac{1}{3}x+\frac{1}{6}\right)\left(-x-4\frac{1}{5}\right)

Then determine for which values of x x the following is true:

f(x) < 0

Step-by-Step Solution

The function y=(13x+16)(x415) y = \left(\frac{1}{3}x + \frac{1}{6}\right)\left(-x - 4\frac{1}{5}\right) requires us to analyze the sign of the product for various x x values.

First, we must find the zeros of each factor:

  • The zero of 13x+16 \frac{1}{3}x + \frac{1}{6} is found by solving 13x+16=0 \frac{1}{3}x + \frac{1}{6} = 0 :
    Subtract 16 \frac{1}{6} to get:
    13x=16 \frac{1}{3}x = -\frac{1}{6}
    Multiply both sides by 3:
    x=12 x = -\frac{1}{2} .
  • The zero of x415 -x - 4\frac{1}{5} is found by solving x415=0 -x - 4\frac{1}{5} = 0 :
    Add 415 4\frac{1}{5} to get:
    x=415 -x = 4\frac{1}{5}
    Multiply by 1-1 to find:
    x=415 x = -4\frac{1}{5} .

Next, we identify the intervals defined by these zeros: x<415 x < -4\frac{1}{5} , 415<x<12 -4\frac{1}{5} < x < -\frac{1}{2} , and x>12 x > -\frac{1}{2} .

We will determine the sign of the function in each interval:

  • In x<415 x < -4\frac{1}{5} :
    - 13x+16 \frac{1}{3}x + \frac{1}{6} and x415 -x - 4\frac{1}{5} are both negative (since both points are below their respective roots), resulting in a positive product.
  • In 415<x<12 -4\frac{1}{5} < x < -\frac{1}{2} :
    - 13x+16 \frac{1}{3}x + \frac{1}{6} is negative and x415 -x - 4\frac{1}{5} is positive, resulting in a negative product.
  • In x>12 x > -\frac{1}{2} :
    - 13x+16 \frac{1}{3}x + \frac{1}{6} and x415 -x - 4\frac{1}{5} are both positive, resulting in a positive product.

The function is negative in the interval 415<x<12 -4\frac{1}{5} < x < -\frac{1}{2} . Thus, the correct answer corresponding to where the function is negative is the complementary intervals x>12 x > -\frac{1}{2} or x<415 x < -4\frac{1}{5} , which matches choice 2.

Therefore, the solution is x>12 x > -\frac{1}{2} or x<415 x < -4\frac{1}{5} .

Answer

x > -\frac{1}{2} or x < -4\frac{1}{5}