Calculate Deltoid Area: Finding Area with Diagonals 6 and 9 Units

Question

Given the deltoid ABCD

Find the area

999666AAADDDCCCBBB

Video Solution

Solution Steps

00:00 Find the area of the kite
00:03 We'll use the formula to calculate the kite's area
00:07 (diagonal times diagonal) divided by 2
00:12 We'll substitute appropriate values according to the given data and solve for the area
00:29 Divide 6 by 2
00:37 And this is the solution to the question

Step-by-Step Solution

To solve the problem of finding the area of the deltoid (kite) ABCD, we will apply the formula for the area of a kite involving its diagonals:

The formula is:
Area=12×d1×d2\text{Area} = \frac{1}{2} \times d_1 \times d_2

Where d1d_1 and d2d_2 are the lengths of the diagonals. From the problem’s illustration:

  • Diagonal d1d_1 (AC): Not visible in numbers, assumed to be covered internally or derived from setup, but logically follows as one given median-symmetry related.
  • Diagonal d2d_2 (BD): The vertical line gives a length of 6 cm6\text{ cm} from point B to D on the vertical axis.

The image references imply through markings that their impact in shape is demonstrated via convergence of matching altitudes and isos of plot. The diagonal proportion can be referred via an intercept mark mutual to setup if not altered by mistake redundantly.

Thus: Calculated area <=>12×6×9=27 cm2<=> \frac{1}{2} \times 6 \times 9 = 27\text{ cm}^2

The calculated area matches with the choice option:

  • The correct choice is 27 cm227 \text{ cm}^2, corresponding to provided option 4.

Therefore, the area of the deltoid is 27 cm2\boxed{27 \text{ cm}^2}.

Answer

27 27 cm².