How do we calculate the area of complex shapes?

🏆Practice area of a rectangle

How do we calculate the area of complex shapes?

When students hear the words "compound shapes", they usually feel uncomfortable. Just before you also ask yourself: "Oh, why this again?", you should be aware that there is no real reason. Describing shapes as compound doesn't really make them so. As it turns out calculating areas and perimeters of compound shapes is in fact relatively straightforward.

You will be introduced to Complex shapes only after you learn various shapes in geometry. The reason these shapes are complex is due to the fact that they are slightly different from those you've come to know. In each complex shape, additional shapes that you need to identify are hidden. Dividing the complex shape into several different (and familiar) shapes will allow you to answer the question of how to calculate the area of complex shapes.

The trick: extract a familiar shape from within the complex shape

So how do we answer the question of how to calculate the area of complex shapes? First, you need to identify familiar shapes within the complex shape. An example of this: a rectangle. As you know, each shape has properties that you are familiar with, so within the complex shape itself, you can apply the properties of the familiar shape and thus calculate areas and perimeters.

After completing the missing data (according to the properties of each shape, for example: rectangle), you can complete the "puzzle", identify additional data that is revealed to you, and thus calculate the area of the complex shape. When calculating the area of complex shapes, you will often need to perform simple arithmetic operations such as division and addition (mainly for sides in the shape) - all based on the unique properties of each shape.

Two composite shapes labeled with side lengths. • Left shape: A 'house-like' figure formed by a rectangle (4 units wide and 4 units high) with a triangle on top (two equal sides of 6 units, base 4 units). • Right shape: An L-shaped polygon composed of rec

Start practice

Test yourself on area of a rectangle!

Complete the sentence:

To find the area of a right triangle, one must multiply ________________ by each other and divide by 2.

Practice more now

How do we calculate the area of complex shapes?

When students hear the words "compound shapes", they usually feel uncomfortable. Just before you also ask yourself: "Oh, why this again?", you should know that there really is no reason. Describing shapes as compound doesn't really make them so. As it turns out calculating areas and perimeters of compound shapes can actually be relatively straightforward.

You will be introduced to Complex shapes only after you learn various shapes in geometry. The reason these shapes are complex is due to the fact that they are slightly different from those you've come to know. In each complex shape, additional shapes that you need to identify are hidden. Dividing the complex shape into several different (and familiar) shapes will allow you to answer the question of how to calculate the area of complex shapes.

The trick: extract a familiar shape from within the complex shape

So how do we answer the question of how to calculate the area of complex shapes? First, you need to identify familiar shapes within the complex shape. For example: a rectangle. As you know, each shape has properties that you are familiar with, so within the complex shape itself, you can apply the properties of the familiar shape and thus calculate areas and perimeters.

After completing the missing data (according to the properties of each shape, for example: rectangle), you can complete the "puzzle", identify additional data that becomes apparent, and thus calculate the area of the compound shape. When calculating the area of compound shapes, you will often need to perform simple arithmetic operations like division and addition (especially for sides in the shape) - all based on the unique properties of each shape.

For example: Assuming the composite shape includes several different rectangles, based on the given side lengths, it will be possible to calculate the different areas. The area of a rectangle is calculated using the formula length X width. When the side lengths are visible, subtraction and addition can be performed (according to the sizes of the rectangles and their positions within the shape) of sides, and thus calculate the area of the shape, as seen in the example below.

Diagram of a composite shape divided into two labeled areas: 'A' and 'B.' Dimensions provided for the sides: 2, 3, 6, 8, 9, and 10 units.

To calculate the shape's area - we will divide it in a way that creates two rectangles. We will find the area by adding and/or subtracting rectangles.

In this division we created:

A rectangle with size 92=189 \cdot2 = 18 rectangle AA

A rectangle with size ​​​​86=48​​​​8 \cdot 6 = 48 rectangle BB

The area of the entire composite shape is:

92+86=669\cdot2+8\cdot6=66

or

48+18=6648 + 18= 66

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Examples with solutions for Area of a Rectangle

Exercise #1

Calculate the area of the right triangle below:

101010666888AAACCCBBB

Video Solution

Step-by-Step Solution

Due to the fact that AB is perpendicular to BC and forms a 90-degree angle,

it can be argued that AB is the height of the triangle.

Hence we can calculate the area as follows:

AB×BC2=8×62=482=24 \frac{AB\times BC}{2}=\frac{8\times6}{2}=\frac{48}{2}=24

Answer

24 cm²

Exercise #2

ABDC is a deltoid.

AB = BD

DC = CA

AD = 12 cm

CB = 16 cm

Calculate the area of the deltoid.

161616121212CCCAAABBBDDD

Video Solution

Step-by-Step Solution

First, let's recall the formula for the area of a rhombus:

(Diagonal 1 * Diagonal 2) divided by 2

Now we will substitute the known data into the formula, giving us the answer:

(12*16)/2
192/2=
96

Answer

96 cm²

Exercise #3

Calculate the area of the triangle ABC using the data in the figure.

121212888999AAABBBCCCDDD

Video Solution

Step-by-Step Solution

First, let's remember the formula for the area of a triangle:

(the side * the height that descends to the side) /2

 

In the question, we have three pieces of data, but one of them is redundant!

We only have one height, the line that forms a 90-degree angle - AD,

The side to which the height descends is CB,

Therefore, we can use them in our calculation:

CB×AD2 \frac{CB\times AD}{2}

8×92=722=36 \frac{8\times9}{2}=\frac{72}{2}=36

Answer

36 cm²

Exercise #4

The trapezoid ABCD is shown below.

AB = 2.5 cm

DC = 4 cm

Height (h) = 6 cm

Calculate the area of the trapezoid.

2.52.52.5444h=6h=6h=6AAABBBCCCDDD

Video Solution

Step-by-Step Solution

First, let's remind ourselves of the formula for the area of a trapezoid:

A=(Base + Base) h2 A=\frac{\left(Base\text{ }+\text{ Base}\right)\text{ h}}{2}

We substitute the given values into the formula:

(2.5+4)*6 =
6.5*6=
39/2 =
19.5

Answer

1912 19\frac{1}{2}

Exercise #5

The trapezoid ABCD is shown below.

Base AB = 6 cm

Base DC = 10 cm

Height (h) = 5 cm

Calculate the area of the trapezoid.

666101010h=5h=5h=5AAABBBCCCDDD

Video Solution

Step-by-Step Solution

First, we need to remind ourselves of how to work out the area of a trapezoid:

(Base+Base)h2=Area \frac{(Base+Base)\cdot h}{2}=Area

Now let's substitute the given data into the formula:

(10+6)*5 =
2

Let's start with the upper part of the equation:

16*5 = 80

80/2 = 40

Answer

40 cm²

Start practice

More Questions

Related Subjects