Convert f(x) = (x-6)(x-2) to Its Standard Quadratic Form

Question

Find the standard representation of the following function

f(x)=(x6)(x2) f(x)=(x-6)(x-2)

Video Solution

Step-by-Step Solution

To find the standard representation of the quadratic function f(x)=(x6)(x2) f(x) = (x - 6)(x - 2) , follow these steps:

  • Step 1: Apply the FOIL method to expand the expression.
    - First: Multiply the first terms: x×x=x2 x \times x = x^2 .
    - Outside: Multiply the outer terms: x×(2)=2x x \times (-2) = -2x .
    - Inside: Multiply the inner terms: (6)×x=6x (-6) \times x = -6x .
    - Last: Multiply the last terms: (6)×(2)=12 (-6) \times (-2) = 12 .
  • Step 2: Combine the results from the FOIL method.
    - Combine all the expanded terms: x22x6x+12 x^2 - 2x - 6x + 12 .
  • Step 3: Simplify by combining like terms.
    - Combine the x x -terms: 2x6x=8x -2x - 6x = -8x .
    - The expanded and simplified form is: f(x)=x28x+12 f(x) = x^2 - 8x + 12 .

By expanding and simplifying the given product, we have converted it to its standard form. Therefore, the standard representation of the function is f(x)=x28x+12 f(x) = x^2 - 8x + 12 .

The correct choice from the provided options is choice 2: f(x)=x28x+12 f(x) = x^2 - 8x + 12 .

Answer

f(x)=x28x+12 f(x)=x^2-8x+12