Transform f(x)=(x+3)(-x-4) to Standard Polynomial Form

Question

Find the standard representation of the following function

f(x)=(x+3)(x4) f(x)=(x+3)(-x-4)

Video Solution

Step-by-Step Solution

To find the standard form of the given quadratic function f(x)=(x+3)(x4) f(x) = (x+3)(-x-4) , we will expand it using the distributive property.

Step 1: Expand the product.
Using the distributive property (or FOIL method):

f(x)=(x+3)(x4) f(x) = (x+3)(-x-4)

Apply distribution:
First: xx=x2 x \cdot -x = -x^2
Outside: x4=4x x \cdot -4 = -4x
Inside: 3x=3x 3 \cdot -x = -3x
Last: 34=12 3 \cdot -4 = -12

Step 2: Combine all terms together:

f(x)=x24x3x12 f(x) = -x^2 - 4x - 3x - 12

Step 3: Simplify by combining like terms:
Combine the x x terms:

f(x)=x27x12 f(x) = -x^2 - 7x - 12

Therefore, the standard representation of the function is f(x)=x27x12 f(x) = -x^2 - 7x - 12 .

The correct choice from the given options is choice 4.

f(x)=x27x12 f(x)=-x^2-7x-12

Answer

f(x)=x27x12 f(x)=-x^2-7x-12