Determine the Correct Sign in 0×(15+3-2)^2/4 ? (5+4+1)^2 -6^2×0

Question

Determine the correct sign

0×(15+32)2:22 [ ? ] (5+4+1)262×0 0\times(15+3-2)^2:2^2~[~?~]~(5+4+1)^2-6^2\times0

Step-by-Step Solution

To solve this problem, we'll evaluate each side of the inequality using the order of operations and then compare them:

Left Expression: 0×(15+32)2:22 0 \times (15 + 3 - 2)^2 : 2^2

  • First, evaluate inside the parentheses: 15+32=16 15 + 3 - 2 = 16 .
  • Next, apply the exponent: 162=256 16^2 = 256 .
  • The expression becomes 0×256:22 0 \times 256 : 2^2 .
  • Compute the power of 2: 22=4 2^2 = 4 .
  • The expression is now 0×256:4 0 \times 256 : 4 .
  • Divide: 256:4=64 256 : 4 = 64 .
  • Finally, multiply by zero: 0×64=0 0 \times 64 = 0 .

Right Expression: (5+4+1)262×0 (5 + 4 + 1)^2 - 6^2 \times 0

  • First, evaluate inside the parentheses: 5+4+1=10 5 + 4 + 1 = 10 .
  • Apply the exponent: 102=100 10^2 = 100 .
  • Compute the other power: 62=36 6^2 = 36 .
  • The expression becomes 10036×0 100 - 36 \times 0 .
  • Multiply by zero: 36×0=0 36 \times 0 = 0 .
  • Subtract: 1000=100 100 - 0 = 100 .

Now, comparing the values of the two expressions:

  • Left expression equals 0 0 .
  • Right expression equals 100 100 .

Since 0100 0 \ne 100 , the correct sign to use is \ne .

Therefore, the solution to the problem is \ne .

Answer

\ne