Multiplicative Inverse

๐Ÿ†Practice special cases (0 and 1, inverse, fraction line)

Two numbers are multiplicative inverses when their product results in 1 1 .

For example:

12{\Large {1 \over 2}} and 2 2 are multiplicative inverses because 2โ‹…12=1{\Large 2 \cdot {1 \over 2}=1}

Formulation of the Rule for Multiplicative Inverse Numbers:

Whenever a is different from 00, it follows that aโ‹…1a=1{\Large a\cdot{1 \over a} = 1}

Multiplicative Inverse

Multiplication and Division of Multiplicative Inverses

Division is equivalent to multiplication by its multiplicative inverse,

That is: ย 213=2โ‹…3=6{\Large {{2 \over {1 \over 3}} = 2 \cdot 3 = 6}}

Because 3 3 is the multiplicative inverse of ย 13{\Large {1 \over 3}}

Generally: a1b=aโ‹…b \frac{a}{\frac{1}{b}}=aโ‹…b

Start practice

Test yourself on special cases (0 and 1, inverse, fraction line)!

\( 0+0.2+0.6= \) ?

Practice more now

Two numbers are multiplicative inverses when their multiplication results in 1 1 .

For example:

12{\Large {1 \over 2}} and 2 2 are multiplicative inverses because 2โ‹…12=1{\Large 2 \cdot {1 \over 2}=1}

More examples:

The multiplicative inverse of 5 5 is 15{\Large {1 \over 5}}
5โ‹…15=1{\Large 5 \cdot {1 \over 5}=1}


The multiplicative inverse of 3 3 is 13{\Large {1 \over 3}}
3โ‹…13=1{\Large 3 \cdot {1 \over 3}=1}


The multiplicative inverse of 57{\Large {5 \over 7}} is 75{\Large {7 \over 5}}
75โ‹…57=1{\Large {7 \over 5} \cdot {5 \over 7}=1}


The multiplicative inverse of 923{\Large {9 \over 23}} is 239{\Large {23 \over 9}}
239โ‹…923=1{\Large {23 \over 9} \cdot {9 \over 23}=1}


The multiplicative inverse of 0.5 0.5 is 2 2

2โ‹…0.5=1{\Large 2 \cdot 0.5=1}


The multiplicative inverse of 0.25 0.25 is 4 4

4โ‹…0.25=1{\Large 4 \cdot 0.25=1}


Formulation of the Rule for Multiplicative Inverse Numbers:

Whenever a is different from 0 0 , it happens that aโ‹…1a=1{\Large a\cdot{1 \over a} = 1}


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Multiplication and Division of Multiplicative Inverses

Division is equivalent to multiplication by the multiplicative inverse,

that is: ย 213=2โ‹…3=6{\Large {{2 \over {1 \over 3}} = 2 \cdot 3 = 6}}

This is because 3 3 is the multiplicative inverse of ย 13{\Large {1 \over 3}}

In general: ย a/1b=aโ‹…b{\Large a /{1 \over b} = a \cdot b}


Exercises on Multiplicative Inverses

Solve the following exercises

  • 5+472={\Large {5+{{4 \over 7} \over 2} =}}
  • 60.75โˆ’2โ‹…3={\Large {{6 \over 0.75} - 2 \cdot 3 =}}
  • 312โˆ’1316={\Large {{3{1 \over 2}-{{1 \over 3} \over {1 \over 6}}}=}}
  • 1072+278={\Large {{{{10 \over 7} \over 2 } + {2 \over {7 \over 8} }}=}}
  • 35910+7913={\Large {{{3 \over 5} \over {9 \over 10}} + {{7 \over 9} \over {1 \over 3}}=}}

Examples and Exercises with Solutions for Multiplicative Inverse

Exercise #1

Solve the following exercise:

9โˆ’0+0.5= 9-0+0.5=

Video Solution

Step-by-Step Solution

According to the order of operations rules, since the exercise only involves addition and subtraction, we will solve the problem from left to right:

9โˆ’0=9 9-0=9

9+0.5=9.5 9+0.5=9.5

Answer

9.5

Exercise #2

0+0.2+0.6= 0+0.2+0.6= ?

Video Solution

Step-by-Step Solution

According to the order of operations, the exercise is solved from left to right as it contains only an addition operation:

0+0.2=0.2 0+0.2=0.2

0.2+0.6=0.8 0.2+0.6=0.8

Answer

0.8

Exercise #3

Solve the following exercise:

12+3โ‹…0= 12+3\cdot0=

Step-by-Step Solution

According to the order of operations, we first multiply and then add:

12+(3โ‹…0)= 12+(3\cdot0)=

3ร—0=0 3\times0=0

12+0=12 12+0=12

Answer

12 12

Exercise #4

25+2510= \frac{25+25}{10}=

Video Solution

Step-by-Step Solution

Let's begin by multiplying the numerator:

25+25=50 25+25=50

We obtain the following fraction:

5010 \frac{50}{10}

Finally let's reduce the numerator and denominator by 10 and we are left with the following result:

51=5 \frac{5}{1}=5

Answer

5 5

Exercise #5

(5ร—4โˆ’10ร—2)ร—(3โˆ’5)= (5\times4-10\times2)\times(3-5)=

Video Solution

Step-by-Step Solution

This simple rule is the order of operations which states that multiplication precedes addition and subtraction, and division precedes all of them,

In the given example, a multiplication occurs between two sets of parentheses, thus we simplify the expressions within each pair of parentheses separately,

We start with simplifying the expression within the parentheses on the left, this is done in accordance with the order of operations mentioned above, meaning that multiplication comes before subtraction, we perform the multiplications in this expression first and then proceed with the subtraction operations within it, in reverse we simplify the expression within the parentheses on the right and perform the subtraction operation within them:

What remains for us is to perform the last multiplication that was deferred, it is the multiplication that occurred between the expressions within the parentheses in the original expression, we perform it while remembering that multiplying any number by 0 will result in 0:

Therefore, the correct answer is answer d.

Answer

0 0

Do you know what the answer is?
Start practice