Determine the Domain of the Rational Function 12/(8x-4)

Given the following function:

128x4 \frac{12}{8x-4}

What is the domain of the function?

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Does the function have a domain? And if so, what is it?
00:03 To find the domain, remember that division by 0 is not allowed
00:07 So let's find the solution that makes the denominator zero
00:10 Let's isolate X
00:26 Let's factor 8 into 4 and 2
00:29 Let's reduce what we can
00:32 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Given the following function:

128x4 \frac{12}{8x-4}

What is the domain of the function?

2

Step-by-step solution

To find the domain of the function 128x4 \frac{12}{8x-4} , we must determine when the denominator equals zero and exclude these values.

Step 1: Set the denominator equal to zero and solve for x x :

8x4=0 8x - 4 = 0

Step 2: Solve the equation 8x4=0 8x - 4 = 0 for x x :

Add 4 to both sides: 8x=4 8x = 4

Divide both sides by 8: x=48=12 x = \frac{4}{8} = \frac{1}{2}

Step 3: The value x=12 x = \frac{1}{2} is where the denominator becomes zero, so this value is excluded from the domain.

Therefore, the domain of the function is all real numbers except x=12 x = \frac{1}{2} .

The domain of the function is x12\boxed{x \ne \frac{1}{2}}.

3

Final Answer

x12 x\ne\frac{1}{2}

Practice Quiz

Test your knowledge with interactive questions

Given the following function:

\( \frac{5-x}{2-x} \)

Does the function have a domain? If so, what is it?

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Functions questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations