Domain Analysis: Find Valid Inputs for y = 5x² - 9/16

Question

Find the positive and negative domains of the function below:

y=5x2916 y=5x^2-\frac{9}{16}

Step-by-Step Solution

To solve the problem of finding the positive and negative domains of the function y=5x2916 y = 5x^2 - \frac{9}{16} , follow these steps:

  • Step 1: Set the function equal to zero to find the critical points: 5x2916=0 5x^2 - \frac{9}{16} = 0 .
  • Step 2: Solve the equation for x x :
    5x2=916 5x^2 = \frac{9}{16}
    Divide both sides by 5:
    x2=980 x^2 = \frac{9}{80}
    Take the square root of both sides:
    x=±980 x = \pm \sqrt{\frac{9}{80}} .
  • Step 3: Simplify the expression further:
    x=±380=±345=±3520 x = \pm \frac{3}{\sqrt{80}} = \pm \frac{3}{4\sqrt{5}} = \pm \frac{3\sqrt{5}}{20} .
  • Step 4: Identify intervals based on the roots where the function could be positive or negative.

The roots are x=3520 x = \frac{3\sqrt{5}}{20} and x=3520 x = -\frac{3\sqrt{5}}{20} .
The quadratic opens upwards since the coefficient of x2 x^2 is positive. Therefore, y y will be negative between the roots, i.e.,
For negative domain: 3520<x<3520 -\frac{3\sqrt{5}}{20} < x < \frac{3\sqrt{5}}{20} .
For positive domain: x<3520 x < -\frac{3\sqrt{5}}{20} or x>3520 x > \frac{3\sqrt{5}}{20} .

Verifying against the choices, the correct answer is:

x < -\frac{3\sqrt{5}}{20} < x < \frac{3\sqrt{5}}{20}

x > \frac{3\sqrt{5}}{20} or x > 0 : x < -\frac{3\sqrt{5}}{20}

This matches choice 3 in the given options.

Answer

x < -\frac{3\sqrt{5}}{20} < x < \frac{3\sqrt{5}}{20}

x > \frac{3\sqrt{5}}{20} or x > 0 : x < -\frac{3\sqrt{5}}{20}