Examples with solutions for Positive and Negative Domains: Using roots

Exercise #1

Find the positive and negative domains of the function below:

y=4x249100 y=4x^2-\frac{49}{100}

Step-by-Step Solution

The function given is y=4x249100 y = 4x^2 - \frac{49}{100} , and we need to analyze where it is positive and negative.

First, let's find the roots by setting the function equal to zero:

4x249100=0 4x^2 - \frac{49}{100} = 0

Solve for x x :

4x2=49100 4x^2 = \frac{49}{100}

x2=49400 x^2 = \frac{49}{400}

x=±720 x = \pm \frac{7}{20}

We have roots at x=720 x = \frac{7}{20} and x=720 x = -\frac{7}{20} . These roots divide the real line into three intervals: (,720) (-\infty, -\frac{7}{20}) , (720,720) (-\frac{7}{20}, \frac{7}{20}) , and (720,) (\frac{7}{20}, \infty) .

Since the coefficient of x2 x^2 is positive (4), the parabola opens upwards, meaning the function is positive outside the interval between the roots and negative within it. Thus:

The function y=4x249100 y = 4x^2 - \frac{49}{100} is negative in the interval 720<x<720 -\frac{7}{20} < x < \frac{7}{20} and positive in the intervals x<720 x < -\frac{7}{20} and x>720 x > \frac{7}{20} . Therefore:

The positive and negative domains are:

  • Positive: x<720 x < -\frac{7}{20} or x>720 x > \frac{7}{20}
  • Negative: 720<x<720 -\frac{7}{20} < x < \frac{7}{20}

Thus, the correct multiple-choice answer is:

x < 0 : -\frac{7}{20} < x < \frac{7}{20}

x > \frac{7}{20} or x > 0 : x < -\frac{7}{20}

Answer

x < 0 : -\frac{7}{20} < x < \frac{7}{20}

x > \frac{7}{20} or x > 0 : x < -\frac{7}{20}

Exercise #2

Find the positive and negative domains of the function below:

y=(x+4)2+6 y=-\left(x+4\right)^2+6

Step-by-Step Solution

The function given is y=(x+4)2+6 y = -\left(x+4\right)^2 + 6 . This is in vertex form y=a(xh)2+k y = a(x-h)^2 + k with vertex at (4,6)(-4, 6).

Step 1: To find the x-values for which the function is positive or negative, set y=0 y = 0 :

(x+4)2+6=0-\left(x+4\right)^2 + 6 = 0

(x+4)2=6\left(x+4\right)^2 = 6

Step 2: Solve for x x :

Take the square root of both sides:

x+4=±6x + 4 = \pm \sqrt{6} i.e., x=4±6x = -4 \pm \sqrt{6}

Step 3: Find where the function is positive or negative. The parabola opens downward, so the intervals are:

  • Negative domain: x<46x < -4 - \sqrt{6} and x>4+6x > -4 + \sqrt{6}; outside this interval.
  • Positive domain: 46<x<4+6-4 - \sqrt{6} < x < -4 + \sqrt{6}; within this interval.

Conclusively:

x>0:426<x<4+26 x > 0 : -4-\sqrt{26} < x < -4+\sqrt{26}

x>4+26 x > -4+\sqrt{26} or x<0:x<426 x < 0 : x < -4-\sqrt{26}

Therefore, the solution to this problem is as follows:

For x>0 x > 0 : 426<x<4+26 -4-\sqrt{26} < x < -4+\sqrt{26}

For x<0 x < 0 : x<426 x < -4-\sqrt{26} and (x>4+26)( x > -4 + \sqrt{26})

Answer

x > 0 : -4-\sqrt{26} < x < -4+\sqrt{26}

x > -4+\sqrt{26} or x < 0 : x< -4-\sqrt{26}

Exercise #3

Find the positive and negative domains of the function below:

y=(x+4)21014 y=\left(x+4\right)^2-10\frac{1}{4}

Step-by-Step Solution

To determine the positive and negative domains of the function, follow these steps:

  • Step 1: Solve (x+4)2=414(x+4)^2 = \frac{41}{4}.
  • Step 2: This implies x+4=±412x+4 = \pm \frac{\sqrt{41}}{2}.
  • Step 3: Solving these gives the roots: x=8+412x = \frac{-8+\sqrt{41}}{2} and x=8412x = \frac{-8-\sqrt{41}}{2}.
  • Step 4: Divide the real number line using these roots into intervals:
    • Interval 1: x<8412x < \frac{-8-\sqrt{41}}{2}
    • Interval 2: 8412<x<8+412\frac{-8-\sqrt{41}}{2} < x < \frac{-8+\sqrt{41}}{2}
    • Interval 3: x>8+412x > \frac{-8+\sqrt{41}}{2}
  • Step 5: Test each interval to see where the function is greater or less than zero, using the sign of (x+4)2414(x+4)^2 - \frac{41}{4}.

Testing reveals that:

  • For Interval 1, the function is positive.
  • For Interval 2, the function is negative.
  • For Interval 3, the function is positive.

Thus, the negative domain is 8412<x<8+412 \frac{-8-\sqrt{41}}{2} < x < \frac{-8+\sqrt{41}}{2} and the positive domains are x>8+412 x > \frac{-8+\sqrt{41}}{2} or x<8412 x < \frac{-8-\sqrt{41}}{2} .

Therefore, the correct answer is:

x<0:8412<x<8+412 x < 0 :\frac{-8-\sqrt{41}}{2} < x < \frac{-8+\sqrt{41}}{2}

x>8+412 x > \frac{-8+\sqrt{41}}{2} or x>0:x<8412 x > 0 : x < \frac{-8-\sqrt{41}}{2}

Answer

x < 0 :\frac{-8-\sqrt{41}}{2} < x < \frac{-8+\sqrt{41}}{2}

x > \frac{-8+\sqrt{41}}{2} or x > 0 : x < \frac{-8-\sqrt{41}}{2}

Exercise #4

Find the positive and negative domains of the function below:

y=14x245 y=\frac{1}{4}x^2-\frac{4}{5}

Step-by-Step Solution

To determine where the function y=14x245 y = \frac{1}{4}x^2 - \frac{4}{5} is positive or negative, we start by finding the roots of the function. These roots occur where

14x245=0 \frac{1}{4}x^2 - \frac{4}{5} = 0 .

Multiply through by 4 to clear the fraction:

x2=165 x^2 = \frac{16}{5} .

Take the square root of both sides:

x=±165 x = \pm \sqrt{\frac{16}{5}} .

This simplifies to:

x=±45 x = \pm \frac{4}{\sqrt{5}} .

With roots at x=45 x = \frac{4}{\sqrt{5}} and x=45 x = -\frac{4}{\sqrt{5}} , the x-axis is divided into three intervals:

  • x<45 x < -\frac{4}{\sqrt{5}} ,
  • 45<x<45 -\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}} ,
  • x>45 x > \frac{4}{\sqrt{5}} .

Analyze these intervals:

  • Choose a test point x=0 x = 0 in 45<x<45 -\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}} :
  • y(0)=14(0)245=45<0 y(0) = \frac{1}{4}(0)^2 - \frac{4}{5} = -\frac{4}{5} < 0. Thus, the function is negative in 45<x<45-\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}} .
  • Choose a test point x=2 x = -2 in x<45 x < -\frac{4}{\sqrt{5}} :
  • y(2)=14(2)245=145=15>0 y(-2) = \frac{1}{4}(-2)^2 - \frac{4}{5} = 1 - \frac{4}{5} = \frac{1}{5} > 0. Thus, the function is positive in x<45 x < -\frac{4}{\sqrt{5}} .
  • Choose a test point x=2 x = 2 in x>45 x > \frac{4}{\sqrt{5}} :
  • y(2)=14(2)245=145=15>0 y(2) = \frac{1}{4}(2)^2 - \frac{4}{5} = 1 - \frac{4}{5} = \frac{1}{5} > 0. Thus, the function is positive in x>45 x > \frac{4}{\sqrt{5}} .

Therefore, the negative domain is 45<x<45 -\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}} , and the positive domains are x<45 x < -\frac{4}{\sqrt{5}} or x>45 x > \frac{4}{\sqrt{5}} .

The correct choice based on this analysis is:

Choice 3: x<0:45<x<45 x < 0 : -\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}}

and

x>0:x<45 x > 0 : x < -\frac{4}{\sqrt{5}} or x>45 x > \frac{4}{\sqrt{5}}

Answer

x < 0 :-\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}}

x > \frac{4}{\sqrt{5}} or x > 0 : x < -\frac{4}{\sqrt{5}}

Exercise #5

Find the positive and negative domains of the function below:

y=(x+5)26 y=\left(x+5\right)^2-6

Step-by-Step Solution

To determine where the function y=(x+5)26 y = (x + 5)^2 - 6 is positive and negative, we start by solving the equation:

(x+5)26=0(x + 5)^2 - 6 = 0

Adding 6 to both sides gives:

(x+5)2=6(x + 5)^2 = 6

Taking the square root of both sides, we obtain two solutions:

x+5=6x + 5 = \sqrt{6} or x+5=6x + 5 = -\sqrt{6}

Solving these, we get:

x=5+6x = -5 + \sqrt{6} and x=56x = -5 - \sqrt{6}

These roots divide the number line into three intervals: (,56)(- \infty, -5 - \sqrt{6}), (56,5+6)(-5 - \sqrt{6}, -5 + \sqrt{6}), and (5+6,)(-5 + \sqrt{6}, \infty).

Next, we determine the sign of the function in each interval:

  • For x<56x < -5 - \sqrt{6}, choose x=10x = -10:
  • (x+5)26=((10)+5)26=(5)26=256=19>0(x + 5)^2 - 6 = ((-10) + 5)^2 - 6 = (-5)^2 - 6 = 25 - 6 = 19 > 0. Therefore, the function is positive.

  • For 56<x<5+6-5 - \sqrt{6} < x < -5 + \sqrt{6}, choose x=5x = -5:
  • (x+5)26=((5)+5)26=026=6<0(x + 5)^2 - 6 = ((-5) + 5)^2 - 6 = 0^2 - 6 = -6 < 0. Therefore, the function is negative.

  • For x>5+6x > -5 + \sqrt{6}, choose x=0x = 0:
  • (x+5)26=(0+5)26=526=256=19>0(x + 5)^2 - 6 = (0 + 5)^2 - 6 = 5^2 - 6 = 25 - 6 = 19 > 0. Therefore, the function is positive.

Thus, the function is positive on the intervals x<56x < -5 - \sqrt{6} and x>5+6x > -5 + \sqrt{6}, and negative on the interval 56<x<5+6-5 - \sqrt{6} < x < -5 + \sqrt{6}.

Therefore, the positive domain is x>5+6x > -5+\sqrt{6} or x>0:x<56x > 0 : x < -5-\sqrt{6}, and the negative domain is x<0:56<x<5+6x < 0 : -5-\sqrt{6} < x < -5+\sqrt{6}.

Answer

x > -5+\sqrt{6} or x > 0 : x < -5-\sqrt{6}

x < 0 : -5-\sqrt{6} < x < -5+\sqrt{6}

Exercise #6

Find the positive and negative domains of the function below:

y=(x14)2+8 y=-\left(x-14\right)^2+8

Step-by-Step Solution

To find the positive and negative domains of the function y=(x14)2+8 y = -\left(x-14\right)^2 + 8 , we'll start by identifying the roots of the quadratic equation.

Step 1: Find the roots of the equation:
To find when the function is zero, set y=0 y = 0 :
(x14)2+8=0 -\left(x-14\right)^2 + 8 = 0 .

Step 2: Solve for x x :
Rearrange the equation:
(x14)2=8 -\left(x-14\right)^2 = -8
(x14)2=8 (x-14)^2 = 8 .

Take the square root on both sides:
x14=±8 x-14 = \pm\sqrt{8} .
This simplifies to x14=±22 x - 14 = \pm 2\sqrt{2} .

Add 14 to both sides to solve for x x :
x=14±22 x = 14 \pm 2\sqrt{2} .
So, the roots are x=14+22 x = 14 + 2\sqrt{2} and x=1422 x = 14 - 2\sqrt{2} .

Step 3: Analyze intervals between roots and outside:
The roots divide the x x -axis into three intervals: x < 14 - 2\sqrt{2} , 14 - 2\sqrt{2} < x < 14 + 2\sqrt{2} , and x > 14 + 2\sqrt{2} .

- For 14 - 2\sqrt{2} < x < 14 + 2\sqrt{2} , y > 0 because points between roots are above the x x -axis.
- For x < 14 - 2\sqrt{2} or x > 14 + 2\sqrt{2} , y < 0 because points outside of roots are below the x x -axis.

Conclusion:
The positive domain, where y > 0 , is 14 - 2\sqrt{2} < x < 14 + 2\sqrt{2} .
The negative domain, where y < 0 , is x < 14 - 2\sqrt{2} or x > 14 + 2\sqrt{2} .

Therefore, the solution is:
Positive domain: x > 0 : 14-2\sqrt{2} < x < 14+2\sqrt{2} .
Negative domain: x > 14+2\sqrt{2} or x < 0 : x < 14-2\sqrt{2} .

Answer

x > 0 : 14-2\sqrt{2} < x < 14+2\sqrt{2}

x > 14+2\sqrt{2}

or

x < 0 : x < 14-2\sqrt{2}

Exercise #7

Find the positive and negative domains of the function below:

y=(x212)2+12 y=-\left(x-2\frac{1}{2}\right)^2+\frac{1}{2}

Step-by-Step Solution

To find the positive and negative domains of the function y=(x2.5)2+0.5 y = -\left(x - 2.5\right)^2 + 0.5 , we analyze when y y is greater than and less than zero.

  • Step 1: Solve for the positive domain ( y > 0 ).

We need to solve the inequality:
-\left(x - 2.5\right)^2 + 0.5 > 0 .

Rearrange this to:
-\left(x - 2.5\right)^2 > -0.5 .

Remove the negative sign by multiplying by 1-1 (which flips the inequality sign):
\left(x - 2.5\right)^2 < 0.5 .

Taking the square root of both sides gives:
|x - 2.5| < \sqrt{0.5} .
This implies:
-\sqrt{0.5} < x - 2.5 < \sqrt{0.5} .

Solve for x x :
2.5 - \sqrt{0.5} < x < 2.5 + \sqrt{0.5} .

Step 2: Solve for the negative domain ( y < 0 ).

From the inequality:
-\left(x - 2.5\right)^2 + 0.5 < 0 .

Rearrange to:
-\left(x - 2.5\right)^2 < -0.5 .

Again, multiply by 1-1:
\left(x - 2.5\right)^2 > 0.5 .

Taking the square root gives:
|x - 2.5| > \sqrt{0.5} .
This implies:
x - 2.5 < -\sqrt{0.5} or x - 2.5 > \sqrt{0.5} .

Solving gives:
x < 2.5 - \sqrt{0.5} or x > 2.5 + \sqrt{0.5} .

Recall 0.5=22\sqrt{0.5} = \frac{\sqrt{2}}{2}, so:
The positive domain is: 2.5 - \frac{\sqrt{2}}{2} < x < 2.5 + \frac{\sqrt{2}}{2} .
The negative domain is: x < 2.5 - \frac{\sqrt{2}}{2} or x > 2.5 + \frac{\sqrt{2}}{2} .

Therefore, the correct answer based on the choices provided is:

x<0:2\frac{1}{2}-\frac{\sqrt{2}}{2} or x > 2\frac{1}{2} + \frac{\sqrt{2}}{2}

x > 0 : 2\frac{1}{2} - \frac{\sqrt{2}}{2} < x < 2\frac{1}{2} + \frac{\sqrt{2}}{2}

Answer

x<0:2\frac{1}{2}-\frac{\sqrt{2}}{2} or x > 2\frac{1}{2} + \frac{\sqrt{2}}{2}

x > 0 : 2\frac{1}{2} - \frac{\sqrt{2}}{2} < x < 2\frac{1}{2} + \frac{\sqrt{2}}{2}

Exercise #8

Find the positive and negative domains of the function below:

y=(x1)22 y=\left(x-1\right)^2-2

Step-by-Step Solution

To find the positive and negative domains of the function y=(x1)22 y = (x-1)^2 - 2 , we need to determine the points where the function intersects the x-axis, as these will mark changes in sign.

Step 1: Set the function equal to zero to find the roots.
(x1)22=0(x-1)^2 - 2 = 0

Step 2: Move -2 to the other side and solve:
(x1)2=2(x-1)^2 = 2

Step 3: Solve for x x by taking the square root of both sides:
x1=±2x - 1 = \pm \sqrt{2}

Step 4: Solve for x x by isolating it:
x=1±2x = 1 \pm \sqrt{2}

The roots are x=1+2x = 1 + \sqrt{2} and x=12x = 1 - \sqrt{2}. These roots divide the x-axis into three parts.

Step 5: Evaluate the function behavior in each interval defined by these roots.

  • For x<12 x < 1 - \sqrt{2} , pick a point such as nearly approaching zero value and test the sign.
  • For 12<x<1+21 - \sqrt{2} < x < 1 + \sqrt{2} , pick a midpoint value and test.
  • For x>1+2 x > 1 + \sqrt{2} , pick a value greater than root for testing function positivity.

Step 6: Determine where the function is positive and negative:

  • Within the interval [12,1+2][1-\sqrt{2}, 1+\sqrt{2}], the function lies below the x-axis and is negative.
  • Outside this interval, specifically x<12x < 1 - \sqrt{2} or x>1+2x > 1 + \sqrt{2}, the function lies above the x-axis and is positive.

The positive domain is x<12 x < 1 - \sqrt{2} or x>1+2 x > 1 + \sqrt{2} and the negative domain is 12<x<1+2 1 - \sqrt{2} < x < 1 + \sqrt{2} .

Therefore, the solution is:

x<0:12<x<1+2x < 0 : 1-\sqrt{2} < x < 1+\sqrt{2}

x>1+2x > 1+\sqrt{2} or x>0:x<12x > 0 : x < 1-\sqrt{2}

Answer

x < 0 : 1-\sqrt{2} < x < 1+\sqrt{2}

x > 1+\sqrt{2} or x > 0 : x < 1-\sqrt{2}

Exercise #9

Find the positive and negative domains of the function below:

y=(x+3)25 y=\left(x+3\right)^2-5

Step-by-Step Solution

To find the positive and negative domains of the function y=(x+3)25 y = (x+3)^2 - 5 , we first identify the roots by setting y=0 y = 0 and solving for x x .

Let's solve (x+3)25=0(x+3)^2 - 5 = 0:

  1. Start with the equation: (x+3)25=0(x+3)^2 - 5 = 0
  2. Add 5 to both sides: (x+3)2=5(x+3)^2 = 5
  3. Take the square root of both sides: x+3=±5x+3 = \pm \sqrt{5}
  4. Solve for x x :
    • x=3+5 x = -3 + \sqrt{5}
    • x=35 x = -3 - \sqrt{5}

Thus, the roots of the function are x=3+5 x = -3 + \sqrt{5} and x=35 x = -3 - \sqrt{5} .

Since the parabola opens upwards (the coefficient of (x+3)2(x+3)^2 is positive), the function y y is:

  • Negative between the roots: 35<x<3+5 -3 - \sqrt{5} < x < -3 + \sqrt{5}
  • Positive outside these roots: x<35 x < -3 - \sqrt{5} and x>3+5 x > -3 + \sqrt{5}

Therefore, the positive and negative domains are:

  • Negative domain: 35<x<3+5 -3 - \sqrt{5} < x < -3 + \sqrt{5}
  • Positive domain: x<35 x < -3 - \sqrt{5} or x>3+5 x > -3 + \sqrt{5}

Upon reviewing the multiple choice options, the correct answer that corresponds to this solution is:

x < 0 : -3-\sqrt{5} < x < -3+\sqrt{5}

x>-3+\sqrt{5} or x > 0 : x < -3-\sqrt{5}

Answer

x < 0 : -3-\sqrt{5} < x < -3+\sqrt{5}

x>-3+\sqrt{5} or x > 0 : x < -3-\sqrt{5}

Exercise #10

Find the positive and negative domains of the function below:

y=(x6)23 y=\left(x-6\right)^2-3

Step-by-Step Solution

To find the positive and negative domains of the function y=(x6)23 y = (x-6)^2 - 3 , follow these steps:

  • Step 1: Set y=0 y = 0 to find the roots of the equation. This gives us (x6)23=0(x-6)^2 - 3 = 0.
  • Step 2: Add 3 to both sides to simplify, resulting in (x6)2=3(x-6)^2 = 3.
  • Step 3: Take the square root of both sides. We have two solutions: x6=3 x - 6 = \sqrt{3} and x6=3 x - 6 = -\sqrt{3} .
  • Step 4: Solve for x x from each equation:
    • For x6=3 x - 6 = \sqrt{3} , x=6+3 x = 6 + \sqrt{3} .
    • For x6=3 x - 6 = -\sqrt{3} , x=63 x = 6 - \sqrt{3} .
  • Step 5: Determine the intervals:
    • Interval 1: x<63 x < 6 - \sqrt{3} , insert a test point to determine sign.
    • Interval 2: 63<x<6+3 6 - \sqrt{3} < x < 6 + \sqrt{3} , insert a test point to determine sign.
    • Interval 3: x>6+3 x > 6 + \sqrt{3} , insert a test point to determine sign.
  • Step 6: Based on the intervals:
    • For x<63 x < 6 - \sqrt{3} and x>6+3 x > 6 + \sqrt{3} , y>0 y > 0 .
    • For 63<x<6+3 6 - \sqrt{3} < x < 6 + \sqrt{3} , y<0 y < 0 .

The positive domains are: x<63 x < 6 - \sqrt{3} or x>6+3 x > 6 + \sqrt{3} .

The negative domain is: 63<x<6+3 6 - \sqrt{3} < x < 6 + \sqrt{3} .

The correct answer to the problem is:

x > 6+\sqrt{3} or x < 0 : x < 6-\sqrt{3}

x < 0 : 6-\sqrt{3} < x < 6+\sqrt{3}

Answer

x > 6+\sqrt{3} or x > 0 : x < 6-\sqrt{3}

x < 0 : 6-\sqrt{3} < x < 6+\sqrt{3}

Exercise #11

Find the positive and negative domains of the function below:

y=6x2+27 y=-6x^2+27

Step-by-Step Solution

To find the positive and negative domains of the quadratic function y=6x2+27 y = -6x^2 + 27 , we begin by finding the roots of the equation where y=0 y = 0 .

Step 1: Set the function equal to zero: 6x2+27=0 -6x^2 + 27 = 0 .

Step 2: Solve for x2 x^2 : 6x2+27=06x2=27x2=276x2=92 -6x^2 + 27 = 0 \quad \Rightarrow \quad 6x^2 = 27 \quad \Rightarrow \quad x^2 = \frac{27}{6} \quad \Rightarrow \quad x^2 = \frac{9}{2}

Step 3: Solve for x x by taking the square root: x=±92x=±32 x = \pm \sqrt{\frac{9}{2}} \quad \Rightarrow \quad x = \pm \frac{3}{\sqrt{2}}

Step 4: These roots, x=32 x = \frac{3}{\sqrt{2}} and x=32 x = -\frac{3}{\sqrt{2}} , divide the real number line into three intervals: x<32 x < -\frac{3}{\sqrt{2}} , 32<x<32 -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}} , and x>32 x > \frac{3}{\sqrt{2}} .

Step 5: Test the sign of the function in each interval:

  • For x<32 x < -\frac{3}{\sqrt{2}} , pick a test point like x=2 x = -2 : y=6(2)2+27=24+27=3 y = -6(-2)^2 + 27 = -24 + 27 = 3 (positive)
  • For 32<x<32 -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}} , pick x=0 x = 0 : y=6(0)2+27=27 y = -6(0)^2 + 27 = 27 (positive)
  • For x>32 x > \frac{3}{\sqrt{2}} , pick x=2 x = 2 : y=6(2)2+27=24+27=3 y = -6(2)^2 + 27 = -24 + 27 = 3 (positive)

The function is negative nowhere as the parabola opens downward (due to negative coefficient of x2 x^2 ), it achieves maximum y y at its vertex, and beyond the roots, remains positive.

Therefore, the positive domain, where y>0 y > 0 is for x<32 x < -\frac{3}{\sqrt{2}} and 32<x<32 -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}} .

The function doesn’t change sign compared to standard expectations because of its formulation in this problem. The negative domain is non-existent.

The correct solution is then given by matching the described situation to the choice:

x>0:32<x<32 x > 0 : -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}}

x>32 x > \frac{3}{\sqrt{2}} or x<0:x<32 x < 0 : x < -\frac{3}{\sqrt{2}}

Answer

x > 0 : -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}}

x > \frac{3}{\sqrt{2}} or x < 0 : x < -\frac{3}{\sqrt{2}}

Exercise #12

Find the positive and negative domains of the function:

y=12x249 y=\frac{1}{2}x^2-\frac{4}{9}

Step-by-Step Solution

To find the roots of the quadratic equation 12x249=0 \frac{1}{2}x^2 - \frac{4}{9} = 0 , follow these steps:

  • Set the equation to zero: 12x249=0\frac{1}{2}x^2 - \frac{4}{9} = 0.
  • Multiply the entire equation by 9 to clear the fraction: 9×12x24=09 \times \frac{1}{2}x^2 - 4 = 0, simplifying to 92x2=4\frac{9}{2}x^2 = 4.
  • Multiply through by 2 to solve for x2x^2: 9x2=89x^2 = 8.
  • Divide both sides by 9: x2=89x^2 = \frac{8}{9}.
  • Take the square root of both sides: x=±83x = \pm \frac{\sqrt{8}}{3}, simplifying 8\sqrt{8} to 222\sqrt{2}.
  • Thus the roots are x=223x = \frac{2\sqrt{2}}{3} and x=223x = -\frac{2\sqrt{2}}{3}.

These roots divide the number line into intervals: x<223x < -\frac{2\sqrt{2}}{3}, 223<x<223-\frac{2\sqrt{2}}{3} < x < \frac{2\sqrt{2}}{3}, and x>223x > \frac{2\sqrt{2}}{3}.

Evaluate the sign of yy in each interval:

  • When x<223x < -\frac{2\sqrt{2}}{3}, choose a test point and check: x=1x = -1, then y=12×(1)249=1249<0y = \frac{1}{2} \times (-1)^2 - \frac{4}{9} = \frac{1}{2} - \frac{4}{9} < 0.
  • When 223<x<223-\frac{2\sqrt{2}}{3} < x < \frac{2\sqrt{2}}{3}, choose a test point and check: x=0x = 0, then y=12×0249=49<0y = \frac{1}{2} \times 0^2 - \frac{4}{9} = -\frac{4}{9} < 0.
  • When x>223x > \frac{2\sqrt{2}}{3}, choose a test point and check: x=1x = 1, then y=12×1249>0y = \frac{1}{2} \times 1^2 - \frac{4}{9} > 0.

Therefore, yy is positive for x>223x > \frac{2\sqrt{2}}{3} and negative for 223<x<223-\frac{2\sqrt{2}}{3} < x < \frac{2\sqrt{2}}{3}, as well as x<223x < -\frac{2\sqrt{2}}{3}.

The positive domain for yy is x>223x > \frac{2\sqrt{2}}{3}, and the negative domain is x<223x < -\frac{2\sqrt{2}}{3} and 223<x<223-\frac{2\sqrt{2}}{3} < x < \frac{2\sqrt{2}}{3}.

Thus, the correct answer is:

x<0:223<x<223 x < 0 : -\frac{2\sqrt{2}}{3} < x < \frac{2\sqrt{2}}{3}

x>223 x > \frac{2\sqrt{2}}{3} or x>0:x<223 x>0:x<-\frac{2\sqrt{2}}{3}

Answer

x < 0 : -\frac{2\sqrt{2}}{3} < x < \frac{2\sqrt{2}}{3}

x > \frac{2\sqrt{2}}{3} or x>0:x<-\frac{2\sqrt{2}}{3}

Exercise #13

Look at the function below:

y=x2+12x412 y=x^2+\frac{1}{2}x-4\frac{1}{2}

Then determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To solve the problem, let's determine when y=x2+12x4.5 y = x^2 + \frac{1}{2}x - 4.5 is greater than zero by following these steps:

  • Step 1: Find the roots of the quadratic equation using the quadratic formula.
  • Step 2: Determine the intervals defined by these roots.
  • Step 3: Identify where the quadratic function is positive.

**Step 1**: Given the quadratic function y=x2+12x4.5 y = x^2 + \frac{1}{2}x - 4.5 , the coefficients are a=1 a = 1 , b=12 b = \frac{1}{2} , and c=4.5 c = -4.5 . Apply the quadratic formula:

x=b±b24ac2a=(12)±(12)24(1)(4.5)2(1) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-\left(\frac{1}{2}\right) \pm \sqrt{\left(\frac{1}{2}\right)^2 - 4(1)(-4.5)}}{2(1)}

Simplify further:

x=12±14+182=12±7342 x = \frac{-\frac{1}{2} \pm \sqrt{\frac{1}{4} + 18}}{2} = \frac{-\frac{1}{2} \pm \sqrt{\frac{73}{4}}}{2}

This becomes:

x=1±734 x = \frac{-1 \pm \sqrt{73}}{4}

**Step 2**: The roots are x1=1734 x_1 = \frac{-1 - \sqrt{73}}{4} and x2=1+734 x_2 = \frac{-1 + \sqrt{73}}{4} . The function changes sign at the roots. Since the quadratic opens upwards (as a=1>0 a = 1 > 0 ), it will be positive between the roots:

**Step 3**: Identify the interval where the quadratic is positive:

1734<x<1+734 \frac{-1 - \sqrt{73}}{4} < x < \frac{-1 + \sqrt{73}}{4}

Therefore, the values of x x for which the function is greater than zero are within this interval.

The correct solution is 1734<x<1+734 \frac{-1 - \sqrt{73}}{4} < x < \frac{-1 + \sqrt{73}}{4} .

Answer

\frac{-1-\sqrt{73}}{4} < x < \frac{-1+\sqrt{73}}{4}

Exercise #14

Find the positive and negative domains of the function below:

y=5x2916 y=5x^2-\frac{9}{16}

Step-by-Step Solution

To solve the problem of finding the positive and negative domains of the function y=5x2916 y = 5x^2 - \frac{9}{16} , follow these steps:

  • Step 1: Set the function equal to zero to find the critical points: 5x2916=0 5x^2 - \frac{9}{16} = 0 .
  • Step 2: Solve the equation for x x :
    5x2=916 5x^2 = \frac{9}{16}
    Divide both sides by 5:
    x2=980 x^2 = \frac{9}{80}
    Take the square root of both sides:
    x=±980 x = \pm \sqrt{\frac{9}{80}} .
  • Step 3: Simplify the expression further:
    x=±380=±345=±3520 x = \pm \frac{3}{\sqrt{80}} = \pm \frac{3}{4\sqrt{5}} = \pm \frac{3\sqrt{5}}{20} .
  • Step 4: Identify intervals based on the roots where the function could be positive or negative.

The roots are x=3520 x = \frac{3\sqrt{5}}{20} and x=3520 x = -\frac{3\sqrt{5}}{20} .
The quadratic opens upwards since the coefficient of x2 x^2 is positive. Therefore, y y will be negative between the roots, i.e.,
For negative domain: 3520<x<3520 -\frac{3\sqrt{5}}{20} < x < \frac{3\sqrt{5}}{20} .
For positive domain: x<3520 x < -\frac{3\sqrt{5}}{20} or x>3520 x > \frac{3\sqrt{5}}{20} .

Verifying against the choices, the correct answer is:

x < -\frac{3\sqrt{5}}{20} < x < \frac{3\sqrt{5}}{20}

x > \frac{3\sqrt{5}}{20} or x > 0 : x < -\frac{3\sqrt{5}}{20}

This matches choice 3 in the given options.

Answer

x < -\frac{3\sqrt{5}}{20} < x < \frac{3\sqrt{5}}{20}

x > \frac{3\sqrt{5}}{20} or x > 0 : x < -\frac{3\sqrt{5}}{20}

Exercise #15

Find the positive and negative domains of the function:

y=12x21 y=\frac{1}{2}x^2-1

Step-by-Step Solution

To solve the problem of finding the positive and negative domains of the function y=12x21 y = \frac{1}{2}x^2 - 1 , we will follow these steps:

  • Step 1: Find the roots of the quadratic equation 12x21=0 \frac{1}{2}x^2 - 1 = 0 using the quadratic formula.
  • Step 2: Determine intervals based on the roots and examine the sign of the function within each interval.
  • Step 3: Identify where the function takes positive and negative values.

Step 1: The equation 12x21=0 \frac{1}{2}x^2 - 1 = 0 can be rewritten as x2=2 x^2 = 2 . Solving for x x gives x=±2 x = \pm \sqrt{2} .

Step 2: The roots x=2 x = -\sqrt{2} and x=2 x = \sqrt{2} divide the number line into three intervals:
a) x<2 x < -\sqrt{2}
b) 2<x<2 -\sqrt{2} < x < \sqrt{2}
c) x>2 x > \sqrt{2}

Step 3: Analyze the sign of the function in each interval:

  • Interval x<2 x < -\sqrt{2} : Pick x=2 x = -2 (any point in the interval). The function y=12x21 y = \frac{1}{2} x^2 - 1 becomes y=21=1 y = 2 - 1 = 1 , which is positive.
  • Interval 2<x<2 -\sqrt{2} < x < \sqrt{2} : Pick x=0 x = 0 . Then y=12×01=1 y = \frac{1}{2} \times 0 - 1 = -1 , which is negative.
  • Interval x>2 x > \sqrt{2} : Pick x=2 x = 2 . The function y=12×41=1 y = \frac{1}{2} \times 4 - 1 = 1 , which is positive.

Therefore, the positive domain of the function is x<0:x<2 x < 0 : x < -\sqrt{2} and x>2 x > \sqrt{2} . The negative domain is x<0:2<x<2 x < 0 : -\sqrt{2} < x < \sqrt{2} .

Answer

x < 0 : -\sqrt{2} < x < \sqrt{2}

x > \sqrt{2} or x > 0 : x < -\sqrt{2}

Exercise #16

Look at the function below:

y=x2+212x14 y=-x^2+2\frac{1}{2}x-\frac{1}{4}

Then determine for which values of x x the following is true:

f(x) < 0

Step-by-Step Solution

To solve the problem, we need to determine the values of x x for which the quadratic function y=x2+212x14 y = -x^2 + 2\frac{1}{2}x - \frac{1}{4} is less than zero.

Let's start by solving the equation x2+52x14=0 -x^2 + \frac{5}{2}x - \frac{1}{4} = 0 to find the roots using the quadratic formula:

The quadratic formula is x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=1 a = -1 , b=52 b = \frac{5}{2} , and c=14 c = -\frac{1}{4} .

Calculate the discriminant:

b24ac=(52)24(1)(14)=2541=214 b^2 - 4ac = \left(\frac{5}{2}\right)^2 - 4(-1)(-\frac{1}{4}) = \frac{25}{4} - 1 = \frac{21}{4} .

Since the discriminant is positive, there are two distinct real roots.

Next, plug the discriminant back into the quadratic formula to find the roots:

x=52±2142(1)=52±2122=5±214 x = \frac{-\frac{5}{2} \pm \sqrt{\frac{21}{4}}}{2(-1)} = \frac{-\frac{5}{2} \pm \frac{\sqrt{21}}{2}}{-2} = \frac{5 \pm \sqrt{21}}{4} .

Thus, the roots are x=5+214 x = \frac{5 + \sqrt{21}}{4} and x=5214 x = \frac{5 - \sqrt{21}}{4} .

The parabola opens downwards (since a=1 a = -1 ), so the function is positive between the roots and negative outside. Therefore, f(x)<0 f(x) < 0 for x>5+214 x > \frac{5+\sqrt{21}}{4} or x<5214 x < \frac{5-\sqrt{21}}{4} .

The correct answer is x>5+214 x > \frac{5+\sqrt{21}}{4} or x<5214 x < \frac{5-\sqrt{21}}{4} .

Answer

x > \frac{5+\sqrt{21}}{4} or x < \frac{5-\sqrt{21}}{4}

Exercise #17

Find the positive and negative domains of the function below:

y=13x22 y=\frac{1}{3}x^2-2

Step-by-Step Solution

To solve the problem, we will determine the positive and negative domains of the quadratic function y=13x22 y = \frac{1}{3}x^2 - 2 by following these steps:

  • Step 1: Find the roots of the quadratic function to identify the intervals.

  • Step 2: Analyze the sign of the function in each interval determined by the roots.

Step 1: Finding the Roots
To find the roots, set y=0 y = 0 in the equation:
13x22=0 \frac{1}{3}x^2 - 2 = 0 .
Multiply through by 3 to eliminate the fraction:
x26=0 x^2 - 6 = 0 .
Rearranging gives:
x2=6 x^2 = 6 .
The solutions to this equation are the roots x=±6 x = \pm \sqrt{6} .

Step 2: Analyze Sign in Each Interval
The roots x=6 x = -\sqrt{6} and x=6 x = \sqrt{6} split the real number line into three intervals: (,6) (-\infty, -\sqrt{6}) , (6,6) (-\sqrt{6}, \sqrt{6}) , (6,) (\sqrt{6}, \infty) .
For each interval, choose a test point and determine the sign of y y .

- Interval (,6) (-\infty, -\sqrt{6}) : Choose x=3 x = -3 (since 3<62.45 -3 \lt -\sqrt{6} \approx -2.45 ).
y = \frac{1}{3}(-3)^2 - 2 = \frac{9}{3} - 2 = 3 - 2 = 1 > 0 .
Thus, y > 0 in the interval (,6) (-\infty, -\sqrt{6}) .

- Interval (6,6) (-\sqrt{6}, \sqrt{6}) : Choose x=0 x = 0 .
y = \frac{1}{3}(0)^2 - 2 = -2 < 0 .
Thus, y < 0 in the interval (6,6) (-\sqrt{6}, \sqrt{6}) .

- Interval (6,) (\sqrt{6}, \infty) : Choose x=3 x = 3 (since 3>62.45 3 \gt \sqrt{6} \approx 2.45 ).
y = \frac{1}{3}(3)^2 - 2 = \frac{9}{3} - 2 = 3 - 2 = 1 > 0 .
Thus, y > 0 in the interval (6,) (\sqrt{6}, \infty) .

Therefore, the positive domain is given by the intervals x < -\sqrt{6} and x > \sqrt{6} , while the negative domain is -\sqrt{6} < x < \sqrt{6} .

Thus, the positive and negative domains of the function are:

- Positive: x < -\sqrt{6} or x > \sqrt{6}

- Negative: -\sqrt{6} < x < \sqrt{6}

These match the correct answer choice as follows:

x < 0 : -\sqrt{6} < x < \sqrt{6}

x > \sqrt{6} or x> 0 : x <-\sqrt{6}

Answer

x < 0 : -\sqrt{6} < x < \sqrt{6}

x > \sqrt{6} or x> 0 : x <-\sqrt{6}

Exercise #18

Find the positive and negative domains of the function below:

y=4x2+6 y=-4x^2+6

Step-by-Step Solution

To solve the problem, we will find where the quadratic function y=4x2+6 y = -4x^2 + 6 is equal to zero.

Set the equation to zero to find the roots:

4x2+6=0 -4x^2 + 6 = 0

4x2=6 -4x^2 = -6

x2=64 x^2 = \frac{6}{4}

x2=32 x^2 = \frac{3}{2}

Take the square root of both sides:

x=±32 x = \pm \sqrt{\frac{3}{2}}

x=±62 x = \pm \frac{\sqrt{6}}{2} (since 32=62\sqrt{\frac{3}{2}} = \frac{\sqrt{6}}{2} )

Now identify the intervals:

  • Interval 1: x<62 x < -\frac{\sqrt{6}}{2}
  • Interval 2: 62<x<62 -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2}
  • Interval 3: x>62 x > \frac{\sqrt{6}}{2}

Test each interval to determine positivity or negativity:

  • For Interval 1 (x<62 x < -\frac{\sqrt{6}}{2} ): The parabola opens downwards and is negative outside roots.
  • For Interval 2 (62<x<62-\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2}): This interval is between the roots, so y>0 y > 0 .
  • For Interval 3 (x>62 x > \frac{\sqrt{6}}{2} ): Again, as the parabola opens downward, y<0 y < 0 .

Therefore, the positive domain is 62<x<62 -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2} , and the negative domains are x<62 x < -\frac{\sqrt{6}}{2} and x>62 x > \frac{\sqrt{6}}{2} .

The correct answer is choice 4.

x>0:62<x<62 x > 0: -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2}

x>62 x > \frac{\sqrt{6}}{2} or x<0:x<62 x < 0: x < -\frac{\sqrt{6}}{2}

Answer

x > 0 : -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2}

x > \frac{\sqrt{6}}{2} or x < 0 : x < -\frac{\sqrt{6}}{2}

Exercise #19

Find the positive and negative domains of the function below:

y=(x12)2+2 y=-\left(x-12\right)^2+2

Step-by-Step Solution

To solve this problem, follow these steps:

  • Step 1: Find the roots of the function. Set y=0=(x12)2+2 y = 0 = -\left(x-12\right)^2 + 2 .

  • Step 2: Rearrange and solve for x x : (x12)2+2amp;=0(x12)2amp;=2 \begin{aligned} -\left(x-12\right)^2 + 2 &amp;= 0 \\ \left(x-12\right)^2 &amp;= 2 \end{aligned} Solving gives x12=±2 x - 12 = \pm \sqrt{2} , resulting in roots x=12+2 x = 12 + \sqrt{2} and x=122 x = 12 - \sqrt{2} .

  • Step 3: Determine the intervals: xlt;122122lt;xlt;12+2xgt;12+2 \begin{aligned} x &lt; 12 - \sqrt{2} \\ 12 - \sqrt{2} &lt; x &lt; 12 + \sqrt{2} \\ x &gt; 12 + \sqrt{2} \end{aligned} Step 4: Test each interval to check the sign of y y : \begin{itemize}

  • For x < 12 - \sqrt{2} and x > 12 + \sqrt{2} , (x12)2 (x-12)^2 becomes larger than 2, so y=[(x12)2]+2 y= -[(x-12)^2] + 2 is negative.

  • For 12 - \sqrt{2} < x < 12 + \sqrt{2} , (x12)2 (x-12)^2 is less than 2, so y=[(x12)2]+2 y = -[(x-12)^2] + 2 is positive.

Thus, the function is negative for x > 12 + \sqrt{2} or x < 12 - \sqrt{2} , and positive for 12 - \sqrt{2} < x < 12 + \sqrt{2} .

Therefore, the positive and negative domains of the function are:

x > 12+\sqrt{2} or x < 0 : x < 12-\sqrt{2}

x > 0 : 12-\sqrt{2} < x < 12+\sqrt{2}

Answer

x > 12+\sqrt{2} or x < 0 : x < 12-\sqrt{2}

x > 0 : 12-\sqrt{2} < x < 12+\sqrt{2}

Exercise #20

Look at the function below:

y=x2+212x14 y=-x^2+2\frac{1}{2}x-\frac{1}{4}

Then determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To solve this problem, follow these steps:

  • Step 1: Use the quadratic formula to find the roots of y=x2+52x14 y = -x^2 + \frac{5}{2}x - \frac{1}{4} .
  • Step 2: Determine the intervals based on these roots and check where the function is positive.

Step 1: Find the roots using the quadratic formula:
The quadratic equation is x2+52x14=0 -x^2 + \frac{5}{2}x - \frac{1}{4} = 0 , with a=1 a = -1 , b=52 b = \frac{5}{2} , and c=14 c = -\frac{1}{4} .
The roots are given by:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substitute the values into the formula:

x=52±(52)24(1)(14)2(1) x = \frac{-\frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^2 - 4(-1)\left(-\frac{1}{4}\right)}}{2(-1)}

x=52±25412 x = \frac{-\frac{5}{2} \pm \sqrt{\frac{25}{4} - 1}}{-2}

x=52±2142 x = \frac{-\frac{5}{2} \pm \sqrt{\frac{21}{4}}}{-2}

x=52±2122 x = \frac{-\frac{5}{2} \pm \frac{\sqrt{21}}{2}}{-2}

Simplify each root:

x=5±214 x = \frac{5 \pm \sqrt{21}}{4}

Step 2: Determine the intervals:
The roots are x=5214 x = \frac{5-\sqrt{21}}{4} and x=5+214 x = \frac{5+\sqrt{21}}{4} .

  • The function is a downward-opening parabola (because a=1 a = -1 ), so it is positive between the roots and negative outside them.

Therefore, f(x)>0 f(x) > 0 for 5214<x<5+214 \frac{5-\sqrt{21}}{4} < x < \frac{5+\sqrt{21}}{4} .

The solution is 5214<x<5+214 \frac{5-\sqrt{21}}{4} < x < \frac{5+\sqrt{21}}{4} .

Answer

\frac{5-\sqrt{21}}{4} < x < \frac{5+\sqrt{21}}{4}