Finding the Domain of the Function: 23/(5x-2)

Question

Given the following function:

235x2 \frac{23}{5x-2}

Does the function have a domain? If so, what is it?

Video Solution

Solution Steps

00:00 Does the function have a domain? And if so, what is it?
00:03 To find the domain, remember that division by 0 is not allowed
00:08 Therefore, let's find the solution that makes the denominator zero
00:15 Let's isolate X
00:27 And this is the solution to the question

Step-by-Step Solution

To determine the domain of the function 235x2 \frac{23}{5x-2} , follow these steps:

  • Step 1: Identify where the function is undefined by setting the denominator equal to zero.
    Equation: 5x2=0 5x - 2 = 0
  • Step 2: Solve the equation for x x .

Let's perform the calculation:
Step 1: Set 5x2=0 5x - 2 = 0 .

Step 2: Solve for x x by adding 2 to both sides:
5x=2 5x = 2

Next, divide both sides by 5:
x=25 x = \frac{2}{5}

This shows that the function is undefined at x=25 x = \frac{2}{5} , thus excluding this point from the domain of the function.

The domain of 235x2 \frac{23}{5x-2} consists of all real numbers except x=25 x = \frac{2}{5} .

Therefore, the domain is expressed as x25 x \ne \frac{2}{5} .

Considering the multiple-choice options, the correct choice is:

Yes, x25 x\ne\frac{2}{5}

Answer

Yes, x25 x\ne\frac{2}{5}