Formulate an Algebraic Expression with Constants: a=2, b=1/2, c=4

Question

Create an algebraic expression based on the following parameters:

a=2,b=12,c=4 a=2,b=\frac{1}{2},c=4

Video Solution

Solution Steps

00:00 Convert the parameters to a quadratic function
00:03 We'll use the formula to represent a quadratic equation
00:13 Connect the parameter to its corresponding unknown according to the formula
00:37 And this is the solution to the question

Step-by-Step Solution

To solve this problem, we'll follow the steps outlined:

  • Step 1: Identify the given values for the quadratic function's parameters: a=2 a = 2 , b=12 b = \frac{1}{2} , and c=4 c = 4 .
  • Step 2: Apply these values to the standard quadratic form y=ax2+bx+c y = ax^2 + bx + c .
  • Step 3: Substitute the values to construct the algebraic expression.

Now, let's proceed with these steps:

Given the standard form of a quadratic expression y=ax2+bx+c y = ax^2 + bx + c :

Substituting the values, we obtain:

y=2x2+12x+4 y = 2x^2 + \frac{1}{2}x + 4

Therefore, the correct algebraic expression for the quadratic function is 2x2+12x+4 2x^2 + \frac{1}{2}x + 4 .

Answer

2x2+12x+4 2x^2+\frac{1}{2}x+4