Compose an Algebraic Expression: Using a=3, b=0, c=0

Create an algebraic expression based on the following parameters:

a=3,b=0,c=0 a=3,b=0,c=0

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Convert the parameters to a quadratic function
00:03 We'll use the formula to represent a quadratic equation
00:08 We'll connect the parameter to the corresponding variable according to the formula
00:24 We'll write the function in its reduced form
00:32 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Create an algebraic expression based on the following parameters:

a=3,b=0,c=0 a=3,b=0,c=0

2

Step-by-step solution

To solve this problem, we'll follow these steps:

  • Step 1: Substitute the given values a=3 a = 3 , b=0 b = 0 , and c=0 c = 0 into the quadratic function formula y=ax2+bx+c y = ax^2 + bx + c .
  • Step 2: Simplify the expression.

Let's execute these steps:

Step 1: Substitute the values into the formula:
y=3x2+0x+0 y = 3x^2 + 0x + 0

Step 2: Simplify the expression:
Eliminate the terms with zero coefficients to get:
y=3x2 y = 3x^2

Thus, the algebraic expression for the quadratic function with a=3 a = 3 , b=0 b = 0 , and c=0 c = 0 is 3x2 3x^2 .

Therefore, the correct choice from the options provided is choice 1: 3x2 3x^2

3

Final Answer

3x2 3x^2

Practice Quiz

Test your knowledge with interactive questions

What is the value of the coefficient \( b \) in the equation below?

\( 3x^2+8x-5 \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations