Maximum Value Selection: Comparing Numerical Quantities

Question

Which of the following options represents the largest value:

Video Solution

Solution Steps

00:04 First, let's pick the largest value.
00:07 When you multiply the square root of number A with the square root of number B,
00:13 The result is the square root of the product of A and B.
00:17 Now, let's use this rule in our exercise and find the products.
00:22 Apply this method to each expression and find the biggest one.
00:27 And that's the solution! Great job!

Step-by-Step Solution

In order to determine which of the following options has the largest numerical value, we will apply two laws of exponents:

a. Definition of root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

b. Law of exponents for an exponent applied to terms in parentheses (in reverse order):

anbn=(ab)n a^n\cdot b^n=(a\cdot b)^n

Let's start by converting the square root in each of the suggested options (except D) to exponential notation, using the law of exponents mentioned in a above:

36136121126661261294912412 \sqrt{36}\cdot\sqrt{1} \rightarrow 36^{\frac{1}{2}}\cdot1^{\frac{1}{2}}\\ \sqrt{6}\cdot\sqrt{6} \rightarrow 6^{\frac{1}{2}}\cdot6^{\frac{1}{2}}\\ \sqrt{9}\cdot\sqrt{4} \rightarrow 9^{\frac{1}{2}}\cdot4^{\frac{1}{2}}\\ Given that both terms in the multiplication have the same exponent, we can use the law of exponents mentioned in b above and combine them together in the multiplication within parentheses , which are subsequently raised to the same exponent:

3612112(361)12=3612612612(66)12=3612912412(94)12=3612 36^{\frac{1}{2}}\cdot1^{\frac{1}{2}} \rightarrow (36\cdot1)^{\frac{1}{2}}=36^{\frac{1}{2}} \\ 6^{\frac{1}{2}}\cdot6^{\frac{1}{2}}\rightarrow(6\cdot6)^{\frac{1}{2}}=36^{\frac{1}{2}} \\ 9^{\frac{1}{2}}\cdot4^{\frac{1}{2}} \rightarrow (9\cdot4)^{\frac{1}{2}}=36^{\frac{1}{2}} \\ Let's summarize what we've done so far, as shown below:

361=361266=361294=3612 \sqrt{36}\cdot\sqrt{1}=36^{\frac{1}{2}}\\ \sqrt{6}\cdot\sqrt{6}= 36^{\frac{1}{2}}\\ \sqrt{9}\cdot\sqrt{4}= 36^{\frac{1}{2}}\\ Note that the values of all expressions suggested in options A-C are equal to one another.

Therefore, the correct answer is D.

Answer

All answers have the same value