Simplify (a+b)(c·g): Applying the Distributive Property

It is possible to use the distributive property to simplify the expression

(a+b)(cg) (a+b)(c\cdot g)

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Simply
00:03 Open parentheses properly, multiply each factor by each factor
00:10 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

It is possible to use the distributive property to simplify the expression

(a+b)(cg) (a+b)(c\cdot g)

2

Step-by-step solution

To solve this problem, we must determine if we can apply the distributive property to simplify the expression (a+b)(cg) (a+b)(c \cdot g) .

The distributive property states that for any three terms, the expression x(y+z) x(y+z) results in xy+xz xy + xz . Here, we have the sum (a+b) (a + b) and the product (cg) (c \cdot g) .

We can treat (cg) (c \cdot g) as a single term because it involves multiplication, which makes it like a single number or variable in terms of manipulating the expression algebraically. Therefore, using the distributive property, we distribute (cg) (c \cdot g) over the terms within the parentheses:

  • Step 1: Distribute cg c \cdot g to a a , yielding acg acg .
  • Step 2: Distribute cg c \cdot g to b b , yielding bcg bcg .

Hence, the simplified expression is:

acg+bcg acg + bcg .

Therefore, the correct answer, according to the choices provided, is:

No, acg+bcg acg + bcg .

3

Final Answer

No, acg+bcg acg+\text{bcg}

Practice Quiz

Test your knowledge with interactive questions

\( (3+20)\times(12+4)= \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Algebraic Technique questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations