Simplify the Expression: 13a+14b+17c-4a-2b-4b Using Like Terms

13a+14b+17c4a2b4b=? 13a+14b+17c-4a-2b-4b=\text{?}

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Simplify the expression
00:03 Mark the variables
00:07 Use the commutative law and group like terms together
00:18 Combine factors
00:42 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

13a+14b+17c4a2b4b=? 13a+14b+17c-4a-2b-4b=\text{?}

2

Step-by-step solution

To solve the problem, we should simplify the expression by combining like terms:

  • Step 1: Identify like terms.
    • The terms involving a a are 13a 13a and 4a-4a.
    • The terms involving b b are 14b 14b , 2b-2b, and 4b-4b.
    • The term involving c c is 17c 17c.
  • Step 2: Combine like terms by summing their coefficients:
    • For a a -terms: 13a4a=(134)a=9a 13a - 4a = (13 - 4)a = 9a.
    • For b b -terms: 14b2b4b=(1424)b=8b 14b - 2b - 4b = (14 - 2 - 4)b = 8b.
    The c c term remains unchanged as 17c 17c .

Therefore, the simplified expression is 9a+8b+17c 9a + 8b + 17c .

Checking the choices provided, we see that the correct answer is 9a+8b+17c 9a + 8b + 17c , which matches choice .

Thus, the final simplified expression is 9a+8b+17c 9a + 8b + 17c .

3

Final Answer

9a+8b+17c 9a+8b+17c

Practice Quiz

Test your knowledge with interactive questions

Are the expressions the same or not?

\( 3+3+3+3 \)

\( 3\times4 \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Algebraic Expressions questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations