Solve |3x - 4| ≤ 5: Absolute Value Inequality Solution

Given:

3x45 \left|3x - 4\right| \leq 5

Which of the following statements is necessarily true?

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Given:

3x45 \left|3x - 4\right| \leq 5

Which of the following statements is necessarily true?

2

Step-by-step solution

To solve 3x45 \left| 3x - 4 \right| \leq 5 , we should consider two scenarios for the absolute value: 3x45 3x - 4 \leq 5 and 3x45 3x - 4 \geq -5 .

1. Solving 3x45 3x - 4 \leq 5 :

3x45 3x - 4 \leq 5

Add 4 to both sides:

3x9 3x \leq 9

Divide both sides by 3:

x3 x \leq 3

2. Solving 3x45 3x - 4 \geq -5 :

3x45 3x - 4 \geq -5

Add 4 to both sides:

3x1 3x \geq -1

Divide both sides by 3:

x13 x \geq -\frac{1}{3}

Combining both results, we have 13x3 -\frac{1}{3} \leq x \leq 3 , which is the correct answer.

3

Final Answer

13x3 -\frac{1}{3} \leq x \leq 3

Practice Quiz

Test your knowledge with interactive questions

Given:

\( \left|2x-1\right|>-10 \)

Which of the following statements is necessarily true?

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Absolute Value and Inequality questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations