Solve (7+a)² = (½a+8)² + ¾a²: Finding the Value of a

Question

(7+a)(7+a)=(12a+8)2+34a2 (7+a)(7+a)=(\frac{1}{2}a+8)^2+\frac{3}{4}a^2

a=? a=\text{?}

Video Solution

Solution Steps

00:00 Find A
00:03 A factor times itself is actually a square
00:08 We'll use short multiplication formulas to open the brackets
00:29 We'll solve the multiplications and squares
00:34 We'll group factors, reduce what we can
00:43 We'll isolate A
00:48 And this is the solution to the question

Step-by-Step Solution

To solve this problem, follow these steps:

  • Step 1: Expand both sides of the equation.
  • Step 2: Simplify and combine like terms.
  • Step 3: Solve the quadratic equation for a a .

Step 1: Expand both sides:

The left side of the equation is (7+a)2 (7+a)^2 which expands to:

(7+a)2=72+27a+a2=49+14a+a2 (7+a)^2 = 7^2 + 2 \cdot 7 \cdot a + a^2 = 49 + 14a + a^2 .

The right side of the equation is (12a+8)2+34a2 \left(\frac{1}{2}a + 8\right)^2 + \frac{3}{4}a^2 . First, expand the square:

(12a+8)2=(12a)2+212a8+82 \left(\frac{1}{2}a + 8\right)^2 = \left(\frac{1}{2}a\right)^2 + 2 \cdot \frac{1}{2}a \cdot 8 + 8^2 .

=14a2+8a+64 = \frac{1}{4}a^2 + 8a + 64 .

Thus, the right side becomes:

14a2+8a+64+34a2 \frac{1}{4}a^2 + 8a + 64 + \frac{3}{4}a^2 .

=a2+8a+64 = a^2 + 8a + 64 .

Step 2: Set the expanded equations equal and simplify:

49+14a+a2=a2+8a+64 49 + 14a + a^2 = a^2 + 8a + 64 .

Cancel a2 a^2 from both sides:

49+14a=8a+64 49 + 14a = 8a + 64 .

Rearrange terms to isolate a a :

14a8a=6449 14a - 8a = 64 - 49 .

6a=15 6a = 15 .

Step 3: Solve for a a :

a=156=52 a = \frac{15}{6} = \frac{5}{2} .

Therefore, the solution to the problem is a=212 a = 2\frac{1}{2} .

Answer

212 2\frac{1}{2}