Solve: Combining (3/8)a + (14/9)b + 1(1/9)b + (6/8)a with Like Terms

Question

38a+149b+119b+68a=? \frac{3}{8}a+\frac{14}{9}b+1\frac{1}{9}b+\frac{6}{8}a=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Group and simplify terms with the same variable.
  • Step 2: Convert any mixed numbers to improper fractions.
  • Step 3: Find a common denominator to combine fractions.
  • Step 4: Simplify the expression.

Let's work through the steps:
Step 1: Start by grouping like terms. The expression is:
38a+68a+149b+119b \frac{3}{8}a + \frac{6}{8}a + \frac{14}{9}b + 1\frac{1}{9}b .
Step 2: Convert the mixed number to an improper fraction. For 119b 1\frac{1}{9}b : 119b=109b 1\frac{1}{9}b = \frac{10}{9}b .
Rewrite the expression: 38a+68a+149b+109b \frac{3}{8}a + \frac{6}{8}a + \frac{14}{9}b + \frac{10}{9}b .
Step 3: Combine the a a -terms and b b -terms separately:
The a a -terms: 38a+68a=(38+68)a=98a \frac{3}{8}a + \frac{6}{8}a = \left(\frac{3}{8} + \frac{6}{8}\right)a = \frac{9}{8}a .
For the b b -terms: 149b+109b=(149+109)b=249b \frac{14}{9}b + \frac{10}{9}b = \left(\frac{14}{9} + \frac{10}{9}\right)b = \frac{24}{9}b .
Simplify 249 \frac{24}{9}: 249=83 \frac{24}{9} = \frac{8}{3} after dividing by the greatest common divisor 3.
Step 4: Combine simplified terms: 98a+83b \frac{9}{8}a + \frac{8}{3}b .
Convert 98a \frac{9}{8}a to a mixed number: 98a=118a \frac{9}{8}a = 1\frac{1}{8}a .
Convert 83b \frac{8}{3}b to a mixed number: 83b=223b \frac{8}{3}b = 2\frac{2}{3}b .
Thus, the simplified expression is: 118a+223b 1\frac{1}{8}a + 2\frac{2}{3}b .

Therefore, the solution to the problem is 118a+223b 1\frac{1}{8}a + 2\frac{2}{3}b .

Answer

118a+223b 1\frac{1}{8}a+2\frac{2}{3}b