Solve for Domain Area: 9(4x-5/x) = 20(3x-6/(x+1)) Rational Equation

Determine the area of the domain without solving the expression:

9(4x5x)=20(3x6x+1) 9(4x-\frac{5}{x})=20(3x-\frac{6}{x+1})

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Find the domain of substitution
00:02 Domain exists, to ensure we don't divide by 0
00:05 This is one domain, now let's find the second one
00:08 Let's isolate X to find the domain of substitution
00:11 This is the domain of substitution, and this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Determine the area of the domain without solving the expression:

9(4x5x)=20(3x6x+1) 9(4x-\frac{5}{x})=20(3x-\frac{6}{x+1})

2

Step-by-step solution

The domain of the equation is the set of domain values (of the variable in the equation) for which all algebraic expressions in the equation are well defined,

From this, of course - we exclude numbers for which arithmetic operations are not defined,

In the expression on the left side of the given equation:

9(4x5x)=20(3x6x+1) 9(4x-\frac{5}{x})=20(3x-\frac{6}{x+1})

There is a multiplication operation between fractions whose denominators contain algebraic expressions that include the variable of the equation,

These fractions are considered defined as long as the expressions in their denominators are not equal to zero (since division by zero is not possible),

Therefore, the domain of definition of the variable in the equation will be obtained from the requirement that these expressions (in the denominators of the fractions) do not equal zero, as shown below:

For the fraction inside of the parentheses in the expression on the left side we obtain the following:

x0 \boxed{ x\neq0}

For the fraction inside of the parentheses in the expression on the right side we obtain the following:

x+10 x+1\neq0 \\ Proceed to solve the second inequality above (in the same way as solving an equation):

x+10x1 x+1\neq0 \\ \boxed{x\neq-1}

Therefore, the correct answer is answer A.

Note:

It should be noted that the above inequality is a point inequality and not a trend inequality (meaning it negates equality: () (\neq) and does not require a trend: (<,>,,) (<,>,\leq,\geq) ) which is solved exactly like solving an equation. This is unlike solving a trend inequality where different solution rules apply depending on the type of expressions in the inequality, for example: solving a first-degree inequality with one variable (which has only first-degree and lower algebraic expressions), is solved almost identically to solving an equation. However any division or multiplication operation of both sides by a negative number requires that the trend be revered.

3

Final Answer

x0,x1 x≠0,x≠-1

Practice Quiz

Test your knowledge with interactive questions

Select the the domain of the following fraction:

\( \frac{6}{x} \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Algebraic Expressions questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations