Solve Log₃(x²+5x+4)/Log₃x < Log_x12: Finding Valid Domain

Question

Given X>1 find the domain X where it is satisfied:

log3(x2+5x+4)log3x<logx12 \frac{\log_3(x^2+5x+4)}{\log_3x}<\log_x12

Video Solution

Solution Steps

00:00 Solve
00:04 We'll use the formula for logarithmic division
00:15 Let's determine the domain
00:25 Let's equate the logarithms
00:30 Let's arrange the equation
00:35 We'll use the root formula to find possible solutions
00:50 There are always 2 solutions, addition and subtraction
01:00 Let's find the appropriate domain
01:15 And this is the solution to the question

Step-by-Step Solution

To solve the problem:

  • Given the inequality log3(x2+5x+4)log3x<logx12\frac{\log_3(x^2+5x+4)}{\log_3x}<\log_x12, apply the change-of-base formula:
  • Rewrite logx12=log312log3x\log_x 12 = \frac{\log_3 12}{\log_3 x}.
  • Substitute into the inequality:
  • log3(x2+5x+4)log3x<log312log3x\frac{\log_3(x^2 + 5x + 4)}{\log_3 x} < \frac{\log_3 12}{\log_3 x}.
  • Cross multiply assuming log3x>0\log_3 x > 0 (because x>1x > 1): log3(x2+5x+4)<log312\log_3(x^2 + 5x + 4) < \log_3 12.
  • The inequality log3(x2+5x+4)<log312\log_3(x^2 + 5x + 4) < \log_3 12 implies:
  • x2+5x+4<12x^2 + 5x + 4 < 12.
  • Simplify: x2+5x+412<0x^2 + 5x + 4 - 12 < 0, which gives x2+5x8<0x^2 + 5x - 8 < 0.
  • Find roots for x2+5x8=0x^2 + 5x - 8 = 0 using the quadratic formula:
  • x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=1,b=5,c=8a = 1, b = 5, c = -8.
  • x=5±5241(8)2x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot (-8)}}{2}.
  • x=5±572x = \frac{-5 \pm \sqrt{57}}{2}.
  • We find the intervals projecting on the inequality sign: x2+5x8<0x^2 + 5x - 8 < 0.
  • Analyzing the sign change for 1<x<5+5721 < x < \frac{-5 + \sqrt{57}}{2}.
  • Additionally, confirm x2+5x+4>0x^2 + 5x + 4 > 0 for valid logarithm argument, which is naturally satisfied in previous constraints.

Therefore, the solution is: 1<x<2.5+572\mathbf{1 < x < -2.5+\frac{\sqrt{57}}{2}}.

Answer

1 < x < -2.5+\frac{\sqrt{57}}{2}