Given X>1 find the domain X where it is satisfied:
log3xlog3(x2+5x+4)<logx12
To solve the problem:
- Given the inequality log3xlog3(x2+5x+4)<logx12, apply the change-of-base formula:
- Rewrite logx12=log3xlog312.
- Substitute into the inequality:
- log3xlog3(x2+5x+4)<log3xlog312.
- Cross multiply assuming log3x>0 (because x>1): log3(x2+5x+4)<log312.
- The inequality log3(x2+5x+4)<log312 implies:
- x2+5x+4<12.
- Simplify: x2+5x+4−12<0, which gives x2+5x−8<0.
- Find roots for x2+5x−8=0 using the quadratic formula:
- x=2a−b±b2−4ac where a=1,b=5,c=−8.
- x=2−5±52−4⋅1⋅(−8).
- x=2−5±57.
- We find the intervals projecting on the inequality sign: x2+5x−8<0.
- Analyzing the sign change for 1<x<2−5+57.
- Additionally, confirm x2+5x+4>0 for valid logarithm argument, which is naturally satisfied in previous constraints.
Therefore, the solution is: 1<x<−2.5+257.
1 < x < -2.5+\frac{\sqrt{57}}{2}