Solve the Equation: 7 = 5x² + 8x + (x+4)² to Find X

Question

Find X

7=5x2+8x+(x+4)2 7=5x^2+8x+(x+4)^2

Video Solution

Solution Steps

00:00 Find X
00:03 Open parentheses properly according to shortened multiplication formulas
00:15 Arrange the equation so that one side equals 0
00:25 Collect like terms
00:36 Use the quadratic formula to find possible solutions
00:44 Identify the coefficients
00:49 Substitute appropriate values and solve to find solutions
01:02 Calculate the square and products
01:26 These are the 2 options (addition and subtraction)
01:47 And this is the solution to the question

Step-by-Step Solution

To solve this quadratic equation, follow the steps below:

  • Step 1: Begin by expanding (x+4)2 (x+4)^2 .
  • Step 2: Expand to get (x+4)2=x2+8x+16 (x+4)^2 = x^2 + 8x + 16 .
  • Step 3: Substitute the expanded form into the original equation: 7=5x2+8x+x2+8x+16 7 = 5x^2 + 8x + x^2 + 8x + 16 .\
  • Step 4: Combine like terms: 7=6x2+16x+16 7 = 6x^2 + 16x + 16 .
  • Step 5: Rearrange into standard quadratic form: 6x2+16x+9=0 6x^2 + 16x + 9 = 0 .
  • Step 6: Use the quadratic formula x=b±b24ac2a x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} , where a=6 a = 6 , b=16 b = 16 , and c=9 c = 9 .
  • Step 7: Compute the discriminant: b24ac=1624(6)(9)=256216=40 b^2 - 4ac = 16^2 - 4(6)(9) = 256 - 216 = 40 .
  • Step 8: Substitute into the quadratic formula: x=16±4012=16±21012=43±106 x = \frac{{-16 \pm \sqrt{40}}}{12} = \frac{{-16 \pm 2\sqrt{10}}}{12} = -\frac{4}{3} \pm \frac{\sqrt{10}}{6} .

Thus, the solutions are x=43+106 x = -\frac{4}{3} + \frac{\sqrt{10}}{6} and x=43106 x = -\frac{4}{3} - \frac{\sqrt{10}}{6} .

Therefore, the correct solution, corresponding to the provided choices, is 43±106 -\frac{4}{3} \pm \frac{\sqrt{10}}{6} .

Answer

43±106 -\frac{4}{3}\pm\frac{\sqrt{10}}{6}