Find X
7=5x2+8x+(x+4)2
To solve this quadratic equation, follow the steps below:
- Step 1: Begin by expanding (x+4)2.
- Step 2: Expand to get (x+4)2=x2+8x+16.
- Step 3: Substitute the expanded form into the original equation: 7=5x2+8x+x2+8x+16.\
- Step 4: Combine like terms: 7=6x2+16x+16.
- Step 5: Rearrange into standard quadratic form: 6x2+16x+9=0.
- Step 6: Use the quadratic formula x=2a−b±b2−4ac, where a=6, b=16, and c=9.
- Step 7: Compute the discriminant: b2−4ac=162−4(6)(9)=256−216=40.
- Step 8: Substitute into the quadratic formula:
x=12−16±40=12−16±210=−34±610.
Thus, the solutions are x=−34+610 and x=−34−610.
Therefore, the correct solution, corresponding to the provided choices, is −34±610.
−34±610