Examples with solutions for The Quadratic Formula: Using short multiplication formulas

Exercise #1

Find X

(3x+1)2+8=12 (3x+1)^2+8=12

Video Solution

Step-by-Step Solution

To solve the equation (3x+1)2+8=12(3x + 1)^2 + 8 = 12, we start by isolating the squared expression:

  • First, subtract 8 from both sides to simplify: (3x+1)2=128(3x + 1)^2 = 12 - 8.
  • This gives (3x+1)2=4(3x + 1)^2 = 4.

Next, we take the square root of both sides to remove the square:

  • 3x+1=±23x + 1 = \pm 2, recognizing the positive and negative roots of 4.

We now solve for xx in each case:

  • Case 1: 3x+1=23x + 1 = 2
    Subtract 1 from both sides: 3x=13x = 1
    Divide by 3: x=13x = \frac{1}{3}.
  • Case 2: 3x+1=23x + 1 = -2
    Subtract 1 from both sides: 3x=33x = -3
    Divide by 3: x=1x = -1.

Therefore, the solutions to the original equation are x1=13x_1 = \frac{1}{3} and x2=1x_2 = -1.

Answer

x1=13,x2=1 x_1=\frac{1}{3},x_2=-1

Exercise #2

Find X

7=5x2+8x+(x+4)2 7=5x^2+8x+(x+4)^2

Video Solution

Step-by-Step Solution

To solve this quadratic equation, follow the steps below:

  • Step 1: Begin by expanding (x+4)2 (x+4)^2 .
  • Step 2: Expand to get (x+4)2=x2+8x+16 (x+4)^2 = x^2 + 8x + 16 .
  • Step 3: Substitute the expanded form into the original equation: 7=5x2+8x+x2+8x+16 7 = 5x^2 + 8x + x^2 + 8x + 16 .\
  • Step 4: Combine like terms: 7=6x2+16x+16 7 = 6x^2 + 16x + 16 .
  • Step 5: Rearrange into standard quadratic form: 6x2+16x+9=0 6x^2 + 16x + 9 = 0 .
  • Step 6: Use the quadratic formula x=b±b24ac2a x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} , where a=6 a = 6 , b=16 b = 16 , and c=9 c = 9 .
  • Step 7: Compute the discriminant: b24ac=1624(6)(9)=256216=40 b^2 - 4ac = 16^2 - 4(6)(9) = 256 - 216 = 40 .
  • Step 8: Substitute into the quadratic formula: x=16±4012=16±21012=43±106 x = \frac{{-16 \pm \sqrt{40}}}{12} = \frac{{-16 \pm 2\sqrt{10}}}{12} = -\frac{4}{3} \pm \frac{\sqrt{10}}{6} .

Thus, the solutions are x=43+106 x = -\frac{4}{3} + \frac{\sqrt{10}}{6} and x=43106 x = -\frac{4}{3} - \frac{\sqrt{10}}{6} .

Therefore, the correct solution, corresponding to the provided choices, is 43±106 -\frac{4}{3} \pm \frac{\sqrt{10}}{6} .

Answer

43±106 -\frac{4}{3}\pm\frac{\sqrt{10}}{6}

Exercise #3

Find X

7x+1+(2x+3)2=(4x+2)2 7x+1+(2x+3)^2=(4x+2)^2

Video Solution

Step-by-Step Solution

To solve the equation 7x+1+(2x+3)2=(4x+2)2 7x + 1 + (2x + 3)^2 = (4x + 2)^2 , we follow these steps:

  • Step 1: Expand both sides using the square of a binomial formula.
  • Step 2: Simplify the equation to form a standard quadratic equation.
  • Step 3: Use the quadratic formula to find the roots of the equation.

Step 1: Expand the squares.

The left side: (2x+3)2=4x2+12x+9 (2x + 3)^2 = 4x^2 + 12x + 9 .

The right side: (4x+2)2=16x2+16x+4 (4x + 2)^2 = 16x^2 + 16x + 4 .

Step 2: Substitute back into the original equation and simplify:

7x+1+4x2+12x+9=16x2+16x+4 7x + 1 + 4x^2 + 12x + 9 = 16x^2 + 16x + 4 .

Combine like terms:

4x2+19x+10=16x2+16x+4 4x^2 + 19x + 10 = 16x^2 + 16x + 4 .

Step 3: Move all terms to one side:

4x2+19x+1016x216x4=0 4x^2 + 19x + 10 - 16x^2 - 16x - 4 = 0 .

Which simplifies to:

12x2+3x+6=0-12x^2 + 3x + 6 = 0 .

Step 4: Divide by -3 to simplify:

4x2x2=0 4x^2 - x - 2 = 0 .

Step 5: Use the quadratic formula:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=4 a = 4 , b=1 b = -1 , c=2 c = -2 .

Calculate the discriminant:

b24ac=(1)244(2)=1+32=33 b^2 - 4ac = (-1)^2 - 4 \cdot 4 \cdot (-2) = 1 + 32 = 33 .

Calculate the roots:

x=1±338 x = \frac{1 \pm \sqrt{33}}{8} .

Therefore, the solution to the problem is x=1±338 x = \frac{1 \pm \sqrt{33}}{8} .

Answer

1±338 \frac{1\pm\sqrt{33}}{8}

Exercise #4

Solve the following equation:

x3+1(x1)2=x+4 \frac{x^3+1}{(x-1)^2}=x+4

Video Solution

Step-by-Step Solution

To solve this equation, we follow these steps:

  • Step 1: Multiply both sides by (x1)2(x-1)^2 to eliminate the fraction.
  • Step 2: Expand and simplify both sides of the equation.
  • Step 3: Rearrange the equation to form a polynomial equal to zero.
  • Step 4: Solve the resulting polynomial using factorization or the quadratic formula.

Now, let's execute these steps:

Step 1: Multiply both sides by (x1)2(x-1)^2:
(x3+1)=(x+4)(x1)2(x^3 + 1) = (x + 4)(x - 1)^2

Step 2: Expand the right side:
(x+4)(x22x+1)=x(x22x+1)+4(x22x+1) (x + 4)(x^2 - 2x + 1) = x(x^2 - 2x + 1) + 4(x^2 - 2x + 1)

Calculating each part yields:
x(x22x+1)=x32x2+x x(x^2 - 2x + 1) = x^3 - 2x^2 + x
4(x22x+1)=4x28x+4 4(x^2 - 2x + 1) = 4x^2 - 8x + 4

Add these together:
x32x2+x+4x28x+4=x3+2x27x+4 x^3 - 2x^2 + x + 4x^2 - 8x + 4 = x^3 + 2x^2 - 7x + 4

Step 3: Combine terms and rearrange:
x3+1=x3+2x27x+4 x^3 + 1 = x^3 + 2x^2 - 7x + 4

Simplify by cancelling x3x^3 from both sides:
1=2x27x+4 1 = 2x^2 - 7x + 4

Move 1 to the right side:
0=2x27x+3 0 = 2x^2 - 7x + 3

Step 4: Solve the quadratic equation 2x27x+3=0 2x^2 - 7x + 3 = 0 .

Using the quadratic formula, x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=2 a = 2 , b=7 b = -7 , and c=3 c = 3 .

Calculate the discriminant:
b24ac=(7)2423=4924=25 b^2 - 4ac = (-7)^2 - 4 \cdot 2 \cdot 3 = 49 - 24 = 25

Now plug into the quadratic formula:
x=7±254 x = \frac{7 \pm \sqrt{25}}{4}

Simplify:
x=7±54 x = \frac{7 \pm 5}{4}

Two solutions arise:
x=124=3 x = \frac{12}{4} = 3 and x=24=12 x = \frac{2}{4} = \frac{1}{2}

Since x=1 x = 1 would make the denominator zero, it is not a valid solution for the original equation.

Therefore, the solution to the problem is x=3 x = 3 or x=12 x = \frac{1}{2} .

Answer

x=3,12 x=3,\frac{1}{2}

Exercise #5

Solve the following equation:

(x+3)2=4x -(x+3)^2=4x

Video Solution

Step-by-Step Solution

To solve (x+3)2=4x -(x+3)^2 = 4x , follow these steps:

  • Step 1: Expand the left side: (x+3)2=(x2+6x+9) -(x+3)^2 = -(x^2 + 6x + 9) .
  • Step 2: Distribute the negative sign: x26x9 -x^2 - 6x - 9 .
  • Step 3: Set the equation by moving terms to the right: x26x9=4x -x^2 - 6x - 9 = 4x becomes x26x94x=0 -x^2 - 6x - 9 - 4x = 0 .
  • Step 4: Simplify to standard quadratic form: x210x9=0 -x^2 - 10x - 9 = 0 .
  • Step 5: Applying the quadratic formula where a=1 a = -1 , b=10 b = -10 , c=9 c = -9 :
  • x=(10)±(10)24(1)(9)2(1) x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \cdot (-1) \cdot (-9)}}{2 \cdot (-1)} .
  • x=10±100362 x = \frac{10 \pm \sqrt{100 - 36}}{-2} .
  • x=10±642 x = \frac{10 \pm \sqrt{64}}{-2} .
  • x=10±82 x = \frac{10 \pm 8}{-2} .
  • Two solutions arise: x=10+82=9 x = \frac{10 + 8}{-2} = -9 and x=1082=1 x = \frac{10 - 8}{-2} = -1 .

Therefore, the solutions are x1=1 x_1 = -1 and x2=9 x_2 = -9 .

Thus, the correct answer is x1=1,x2=9\mathbf{x_1=-1,x_2=-9}.

Answer

x1=1,x2=9 x_1=-1,x_2=-9

Exercise #6

Solve the following equation:

(x+2)2=(2x+3)2 (x+2)^2=(2x+3)^2

Video Solution

Step-by-Step Solution

We will solve the equation (x+2)2=(2x+3)2 (x+2)^2 = (2x+3)^2 by expanding and simplifying both sides:

Step 1: Expand both sides of the equation:
Left side: (x+2)2=x2+4x+4 (x+2)^2 = x^2 + 4x + 4
Right side: (2x+3)2=4x2+12x+9 (2x+3)^2 = 4x^2 + 12x + 9

Step 2: Set the expanded forms equal to each other:
x2+4x+4=4x2+12x+9 x^2 + 4x + 4 = 4x^2 + 12x + 9

Step 3: Rearrange to form a standard quadratic equation:
Subtract x2+4x+4 x^2 + 4x + 4 from both sides:
0=3x2+8x+5 0 = 3x^2 + 8x + 5

Step 4: Rearrange to get:
3x2+8x+5=0 3x^2 + 8x + 5 = 0

Step 5: Solve using the quadratic formula:
Using a=3 a = 3 , b=8 b = 8 , c=5 c = 5 :
x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=8±8243523 x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot 5}}{2 \cdot 3}
x=8±64606 x = \frac{-8 \pm \sqrt{64 - 60}}{6}
x=8±46 x = \frac{-8 \pm \sqrt{4}}{6}
x=8±26 x = \frac{-8 \pm 2}{6}

Step 6: Calculate the solutions:
x1=8+26=66=1 x_1 = \frac{-8 + 2}{6} = \frac{-6}{6} = -1
x2=826=106=53 x_2 = \frac{-8 - 2}{6} = \frac{-10}{6} = -\frac{5}{3}

Verify in the original equation to assure correctness. Hence, both solutions are valid.

Therefore, the solutions are x1=1 x_1 = -1 and x2=53 x_2 = -\frac{5}{3} , which matches choice 3.

Answer

x1=1,x2=53 x_1=-1,x_2=-\frac{5}{3}

Exercise #7

Solve the following equation:

(x4)2+3x2=16x+12 (x-4)^2+3x^2=-16x+12

Video Solution

Step-by-Step Solution

To solve the given equation, follow these steps:

  • Step 1: Expand (x4)2(x - 4)^2 using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.

Thus, (x4)2=x28x+16(x - 4)^2 = x^2 - 8x + 16.

  • Step 2: Substitute the expanded form into the equation:

x28x+16+3x2=16x+12x^2 - 8x + 16 + 3x^2 = -16x + 12.

  • Step 3: Combine like terms on the left-hand side.

This gives 4x28x+16=16x+124x^2 - 8x + 16 = -16x + 12.

  • Step 4: Rearrange the equation to set it to zero.

Bring all terms to one side: 4x28x+16+16x12=04x^2 - 8x + 16 + 16x - 12 = 0.

Combine and simplify the terms: 4x2+8x+4=04x^2 + 8x + 4 = 0.

  • Step 5: Simplify the equation by dividing each term by 4.

It becomes x2+2x+1=0x^2 + 2x + 1 = 0.

  • Step 6: Recognize the equation as a perfect square trinomial.

(x+1)2=0(x + 1)^2 = 0.

  • Step 7: Solve by taking the square root of both sides.

The solution is x+1=0x + 1 = 0, therefore x=1x = -1.

In conclusion, the solution to the equation is x=1 x = -1 .

Answer

x=1 x=-1

Exercise #8

Solve the following equation:

(x+3)2+2x2=18 (x+3)^2+2x^2=18

Video Solution

Step-by-Step Solution

To solve the equation (x+3)2+2x2=18(x+3)^2 + 2x^2 = 18, we'll follow these steps:

  • Step 1: Expand the expression (x+3)2(x+3)^2.
  • Step 2: Combine and simplify terms to form a standard quadratic equation.
  • Step 3: Use the quadratic formula to find values of xx.

Now, let's work through each step.
Step 1: Expand (x+3)2(x+3)^2:

(x+3)2=x2+2×x×3+32=x2+6x+9(x+3)^2 = x^2 + 2 \times x \times 3 + 3^2 = x^2 + 6x + 9.

Step 2: Substitute back into the original equation:

x2+6x+9+2x2=18x^2 + 6x + 9 + 2x^2 = 18.

Combine like terms:

3x2+6x+9=183x^2 + 6x + 9 = 18.

Subtract 18 from both sides to form the quadratic equation:

3x2+6x+918=03x^2 + 6x + 9 - 18 = 0.

Simplify:

3x2+6x9=03x^2 + 6x - 9 = 0.

Divide every term by 3 to simplify further:

x2+2x3=0x^2 + 2x - 3 = 0.

Step 3: Use the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a=1, b=2b=2, and c=3c=-3.

Calculate discriminant: b24ac=224×1×(3)=4+12=16b^2 - 4ac = 2^2 - 4 \times 1 \times (-3) = 4 + 12 = 16.

Since the discriminant is positive, there are two real roots.

Find roots:

x=2±162×1x = \frac{-2 \pm \sqrt{16}}{2 \times 1}.

Calculate roots:

x1=2+42=1x_1 = \frac{-2 + 4}{2} = 1,
x2=242=3x_2 = \frac{-2 - 4}{2} = -3.

Therefore, the solutions to the equation are x1=1 x_1 = 1, x2=3 x_2 = -3 .

Answer

x1=1,x2=3 x_1=1,x_2=-3

Exercise #9

Solve the following equation:

(x5)25=12+2x (x-5)^2-5=-12+2x

Video Solution

Step-by-Step Solution

To solve the equation (x5)25=12+2x(x-5)^2 - 5 = -12 + 2x, follow these steps:

  • Step 1: Expand the square on the left side of the equation:
    (x5)2=x210x+25(x-5)^2 = x^2 - 10x + 25
  • Step 2: Substitute this back into the equation:
    x210x+255=12+2xx^2 - 10x + 25 - 5 = -12 + 2x
  • Step 3: Simplify the equation:
    x210x+20=12+2xx^2 - 10x + 20 = -12 + 2x
  • Step 4: Rearrange the equation by moving all terms to one side:
    x210x+202x+12=0x^2 - 10x + 20 - 2x + 12 = 0
    This simplifies to x212x+32=0x^2 - 12x + 32 = 0.
  • Step 5: Use the Quadratic Formula, where a=1a = 1, b=12b = -12, and c=32c = 32:
    x=(12)±(12)24×1×322×1x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4 \times 1 \times 32}}{2 \times 1}
  • Step 6: Calculate the discriminant and simplify:
    x=12±1441282x = \frac{12 \pm \sqrt{144 - 128}}{2}
    x=12±162x = \frac{12 \pm \sqrt{16}}{2}
    x=12±42x = \frac{12 \pm 4}{2}
  • Step 7: Solve for the two potential values of xx:
    x1=12+42=8x_1 = \frac{12 + 4}{2} = 8
    x2=1242=4x_2 = \frac{12 - 4}{2} = 4

Thus, the solutions to the equation are x1=8x_1 = 8 and x2=4x_2 = 4.

Therefore, the correct answer is x1=8,x2=4x_1 = 8, x_2 = 4, which corresponds to choice 1.

Answer

x1=8,x2=4 x_1=8,x_2=4

Exercise #10

Solve the following equation:

(x+3)2=2x+5 (x+3)^2=2x+5

Video Solution

Step-by-Step Solution

To solve the equation (x+3)2=2x+5 (x+3)^2 = 2x + 5 , we proceed as follows:

  • Step 1: Expand the left side. Using the identity (a+b)2=a2+2ab+b2 (a+b)^2 = a^2 + 2ab + b^2 , we find:
    (x+3)2=x2+6x+9 (x+3)^2 = x^2 + 6x + 9 .

  • Step 2: Set the equation to zero by moving all terms to one side:
    x2+6x+9=2x+5 x^2 + 6x + 9 = 2x + 5
    Subtract 2x+5 2x + 5 from both sides:
    x2+6x+92x5=0 x^2 + 6x + 9 - 2x - 5 = 0
    This simplifies to:
    x2+4x+4=0 x^2 + 4x + 4 = 0 .

  • Step 3: Solve the quadratic equation x2+4x+4=0 x^2 + 4x + 4 = 0 . Notice this can be factored as:
    (x+2)2=0 (x+2)^2 = 0 .

  • Step 4: Solve for x x by setting the factor equal to zero:
    x+2=0 x+2 = 0 .
    Thus, x=2 x = -2 .

Therefore, the solution to the equation (x+3)2=2x+5 (x+3)^2 = 2x + 5 is x=2 x = -2 .

Answer

x=2 x=-2

Exercise #11

Solve the equation

2x22x=(x+1)2 2x^2-2x=(x+1)^2

Video Solution

Step-by-Step Solution

The given equation is:

2x22x=(x+1)2 2x^2 - 2x = (x+1)^2

Step 1: Expand the right-hand side.

(x+1)2=x2+2x+1(x+1)^2 = x^2 + 2x + 1

Step 2: Write the full equation with the expanded form.

2x22x=x2+2x+12x^2 - 2x = x^2 + 2x + 1

Step 3: Bring all terms to one side of the equation to set it to zero.

2x22xx22x1=02x^2 - 2x - x^2 - 2x - 1 = 0

Step 4: Simplify the equation.

x24x1=0x^2 - 4x - 1 = 0

Step 5: Identify coefficients for the quadratic formula.

Here, a=1a = 1, b=4b = -4, c=1c = -1.

Step 6: Apply the quadratic formula.

x=(4)±(4)241(1)21x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1}

x=4±16+42x = \frac{4 \pm \sqrt{16 + 4}}{2}

x=4±202x = \frac{4 \pm \sqrt{20}}{2}

x=4±252x = \frac{4 \pm 2\sqrt{5}}{2}

x=2±5x = 2 \pm \sqrt{5}

Therefore, the solutions are x=2+5x = 2 + \sqrt{5} and x=25x = 2 - \sqrt{5}.

These solutions correspond to choice (4): Answers a + b

Answer

Answers a + b

Exercise #12

(1x+12)2(1x+13)2=8164 \frac{(\frac{1}{x}+\frac{1}{2})^2}{(\frac{1}{x}+\frac{1}{3})^2}=\frac{81}{64}

Find X

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Cross-multiply the given equation to eliminate fractions.
  • Step 2: Expand the squared terms on either side of the equation.
  • Step 3: Rearrange terms to form a quadratic equation.
  • Step 4: Solve the quadratic equation to find possible values for xx.

Now, let's work through each step:

Step 1: Begin with the given equation:
(1x+12)2(1x+13)2=8164\frac{(\frac{1}{x} + \frac{1}{2})^2}{(\frac{1}{x} + \frac{1}{3})^2} = \frac{81}{64}. Cross-multiply to eliminate fractions:
(1x+12)2×64=(1x+13)2×81(\frac{1}{x} + \frac{1}{2})^2 \times 64 = (\frac{1}{x} + \frac{1}{3})^2 \times 81.

Step 2: Expand each squared term:
For (1x+12)2(\frac{1}{x} + \frac{1}{2})^2, use (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2:
(1x)2+2(1x)(12)+(12)2=1x2+1x+14(\frac{1}{x})^2 + 2(\frac{1}{x})(\frac{1}{2}) + (\frac{1}{2})^2 = \frac{1}{x^2} + \frac{1}{x} + \frac{1}{4}.
Similarly, (1x+13)2=1x2+23x+19(\frac{1}{x} + \frac{1}{3})^2 = \frac{1}{x^2} + \frac{2}{3x} + \frac{1}{9}.

Step 3: Substitute these into the cross-multiplied equation:
64(1x2+1x+14)=81(1x2+23x+19)64\left(\frac{1}{x^2} + \frac{1}{x} + \frac{1}{4}\right) = 81\left(\frac{1}{x^2} + \frac{2}{3x} + \frac{1}{9}\right).

Step 4: Simplify and collect like terms:
64(1x2+1x+14)=(641x2+641x+16)64(\frac{1}{x^2} + \frac{1}{x} + \frac{1}{4}) = (64\frac{1}{x^2} + 64\frac{1}{x} + 16),
81(1x2+23x+19)=(811x2+541x+9)81(\frac{1}{x^2} + \frac{2}{3x} + \frac{1}{9}) = (81\frac{1}{x^2} + 54\frac{1}{x} + 9).

Equating terms gives:
641x2+641x+16=811x2+541x+964\frac{1}{x^2} + 64\frac{1}{x} + 16 = 81\frac{1}{x^2} + 54\frac{1}{x} + 9.

Step 5: Solve the quadratic equation:
Combine like terms: 171x2+101x+7=0-17\frac{1}{x^2} + 10\frac{1}{x} + 7 = 0.
Let y=1xy = \frac{1}{x}. Substitute to get: 17y2+10y+7=0-17y^2 + 10y + 7 = 0.
Multiply the entire equation by -1 to simplify: 17y210y7=017y^2 - 10y - 7 = 0.

Using the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=17a=17, b=10b=-10, c=7c=-7:
y=10±(10)24×17×(7)2×17 y = \frac{10 \pm \sqrt{(-10)^2 - 4 \times 17 \times (-7)}}{2 \times 17}
y=10±100+47634 y = \frac{10 \pm \sqrt{100 + 476}}{34}
y=10±57634 y = \frac{10 \pm \sqrt{576}}{34}
y=10±2434 y = \frac{10 \pm 24}{34}
Which gives:
y=3434=1 y = \frac{34}{34} = 1 or y=1434=717 y = -\frac{14}{34} = -\frac{7}{17} .

Since y=1xy = \frac{1}{x}:
For y=1y=1, x=1y=1x = \frac{1}{y} = 1.
For y=717y=-\frac{7}{17}, x=1y=177x = \frac{1}{y} = -\frac{17}{7}.

Therefore, the solutions for xx are x=1x = 1 and x=177x = -\frac{17}{7}.

Checking the correct answer choice, these correspond to the second choice.

Thus, the solution to the problem is x=1,177 x = 1, -\frac{17}{7} .

Answer

x=1,177 x=1,-\frac{17}{7}

Exercise #13

Solve the following equation:

x3+1(x+1)2=x \frac{x^3+1}{(x+1)^2}=x

Video Solution

Step-by-Step Solution

To solve the equation x3+1(x+1)2=x \frac{x^3 + 1}{(x+1)^2} = x , we will follow these steps:

  • Step 1: Set up the equation for solving by cross-multiplying.
  • Step 2: Simplify and solve the resulting polynomial equation.
  • Step 3: Solve for the values of x x .

Let's work through the solution:

Step 1: Cross-multiply to eliminate the fraction:

(x3+1)=x(x+1)2 (x^3 + 1) = x \cdot (x+1)^2

Expand the right-hand side:

x(x2+2x+1)=x3+2x2+x x \cdot (x^2 + 2x + 1) = x^3 + 2x^2 + x

Step 2: Set the expanded equation equal:

x3+1=x3+2x2+x x^3 + 1 = x^3 + 2x^2 + x

Cancel x3 x^3 from both sides:

1=2x2+x 1 = 2x^2 + x

Re-arrange the equation to form a standard quadratic equation:

0=2x2+x1 0 = 2x^2 + x - 1

Step 3: Solve the quadratic equation using the quadratic formula:

Here, a=2,b=1,c=1.\text{Here, } a = 2, \, b = 1, \, c = -1.

The quadratic formula is:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substitute the values of a a , b b , and c c into the formula:

x=1±124×2×(1)2×2 x = \frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times (-1)}}{2 \times 2}

Calculate the discriminant and simplify:

x=1±1+84=1±94 x = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm \sqrt{9}}{4}

Simplify further:

x=1±34 x = \frac{-1 \pm 3}{4}

This gives the solutions:

x=24=12 x = \frac{2}{4} = \frac{1}{2} x=44=1 x = \frac{-4}{4} = -1

Since x=1 x = -1 would make the denominator zero, it is not allowed as a solution. Thus, the only valid solution is:

Therefore, the solution to the equation is x=12 x = \frac{1}{2} .

Answer

x=12 x=\frac{1}{2}

Exercise #14

Solve the following equation:

(x5)25=10+2x (x-5)^2-5=10+2x

Video Solution

Step-by-Step Solution

To solve the given equation (x5)25=10+2x (x-5)^2 - 5 = 10 + 2x , we'll follow these steps:

  • Step 1: Expand and simplify the left side of the equation.
  • Step 2: Move all terms to form a standard quadratic equation.
  • Step 3: Use the quadratic formula to find the values of x x .

Now, let's work through each step:

Step 1: Expand the left side.
(x5)2=x210x+25 (x-5)^2 = x^2 - 10x + 25
The equation becomes:
x210x+255=10+2x x^2 - 10x + 25 - 5 = 10 + 2x

Step 2: Collect all terms on one side.
x210x+20=10+2x x^2 - 10x + 20 = 10 + 2x
Subtract 10+2x 10 + 2x from both sides to get:
x210x+20102x=0 x^2 - 10x + 20 - 10 - 2x = 0
This simplifies to:
x212x+10=0 x^2 - 12x + 10 = 0

Step 3: Apply the quadratic formula:
For ax2+bx+c=0 ax^2 + bx + c = 0 , the formula is x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .
Here, a=1 a = 1 , b=12 b = -12 , c=10 c = 10 .
Calculate the discriminant:
b24ac=(12)24110=14440=104 b^2 - 4ac = (-12)^2 - 4 \cdot 1 \cdot 10 = 144 - 40 = 104
Now, solve for x x :
x=(12)±10421=12±1042 x = \frac{-(-12) \pm \sqrt{104}}{2 \cdot 1} = \frac{12 \pm \sqrt{104}}{2}

Therefore, the solutions to the equation are:
x1=6+1042 x_1 = 6 + \frac{\sqrt{104}}{2} , x2=61042 x_2 = 6 - \frac{\sqrt{104}}{2} .

This matches the correct choice, confirming that the solution is correct.

Answer

x1=6+1042,x2=61042 x_1=6+\frac{\sqrt{104}}{2},\\x_2=6-\frac{\sqrt{104}}{2}

Exercise #15

Solve the following equation:

(2x+1)2x+2+(x+2)22x+1=4.5x \frac{(2x+1)^2}{x+2}+\frac{(x+2)^2}{2x+1}=4.5x

Step-by-Step Solution

In order to solve the equation, start by removing the denominators.

To do this, we'll multiply the denominators:

(2x+1)2(2x+1)+(x+2)2(x+2)=4.5x(2x+1)(x+2) (2x+1)^2\cdot(2x+1)+(x+2)^2\cdot(x+2)=4.5x(2x+1)(x+2)

Open the parentheses on the left side, making use of the distributive property:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=4.5x(2x+1)(x+2) (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=4.5x(2x+1)(x+2)

Continue to open the parentheses on the right side of the equation:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=4.5x(2x2+5x+2) (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=4.5x(2x^2+5x+2)

Simplify further:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=9x3+22.5x+9x (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=9x^3+22.5x+9x

Go back and simplify the parentheses on the left side of the equation:

8x3+8x2+2x+4x2+4x+1+x3+4x2+4x+2x2+8x+8=9x3+22.5x+9x 8x^3+8x^2+2x+4x^2+4x+1+x^3+4x^2+4x+2x^2+8x+8=9x^3+22.5x+9x

Combine like terms:

9x3+18x2+18x+9=9x3+22.5x+9x 9x^3+18x^2+18x+9=9x^3+22.5x+9x

Notice that all terms can be divided by 9 as shown below:

x3+2x2+2x+1=x3+2.5x+x x^3+2x^2+2x+1=x^3+2.5x+x

Move all numbers to one side:

x3x3+2x22.5x2+2xx+9=0 x^3-x^3+2x^2-2.5x^2+2x-x+9=0

We obtain the following:

0.5x2x1=0 0.5x^2-x-1=0

In order to remove the one-half coefficient, multiply the entire equation by 2

x22x2=0 x^2-2x-2=0

Apply the square root formula, as shown below-

2±122 \frac{2±\sqrt{12}}{2}

Apply the properties of square roots in order to simplify the square root of 12:

2±232 \frac{2±2\sqrt{3}}{2} Divide both the numerator and denominator by 2 as follows:

1±3 1±\sqrt{3}

Answer

x=1±3 x=1±\sqrt{3}

Exercise #16

Solve the following equation:

1(x+1)2+1x+1=1 \frac{1}{(x+1)^2}+\frac{1}{x+1}=1

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Clear fractions by multiplying through by the least common denominator.
  • Step 2: Simplify the resulting equation.
  • Step 3: Solve the quadratic equation using the quadratic formula.

Now, let's work through each step:
**Step 1:** Multiply both sides by (x+1)2(x+1)^2 to clear the denominators:
(x+1)2(1(x+1)2+1x+1)=(x+1)21 (x+1)^2 \left(\frac{1}{(x+1)^2} + \frac{1}{x+1}\right) = (x+1)^2 \cdot 1
This simplifies to:
1+(x+1)=(x+1)2 1 + (x+1) = (x+1)^2
**Step 2:** Simplify the equation:
1+x+1=x2+2x+1 1 + x + 1 = x^2 + 2x + 1
Combine like terms:
2+x=x2+2x+1 2 + x = x^2 + 2x + 1
Rearrange to form a quadratic equation:
x2+2x+1x2=0 x^2 + 2x + 1 - x - 2 = 0
Thus, we have:
x2+x1=0 x^2 + x - 1 = 0
**Step 3:** Solve the quadratic equation x2+x1=0 x^2 + x - 1 = 0 using the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=1 a = 1 , b=1 b = 1 , and c=1 c = -1 .
Calculate the discriminant:
b24ac=1241(1)=1+4=5 b^2 - 4ac = 1^2 - 4 \cdot 1 \cdot (-1) = 1 + 4 = 5
Thus, x x is:
x=1±52 x = \frac{-1 \pm \sqrt{5}}{2}
**Conclusion:** The solutions to the equation are:
x=1+52 x = \frac{-1 + \sqrt{5}}{2} and x=152 x = \frac{-1 - \sqrt{5}}{2}
Upon verifying with given choices, the correct answer is:
x=12[1±5] x = -\frac{1}{2}[1\pm\sqrt{5}\rbrack

Answer

12[1±5] -\frac{1}{2}[1\pm\sqrt{5}\rbrack