Solve the Equation: Balancing (5-3a)² + a and (a+1)² - 31a

Question

(53a)2+a=(a+1)231a (5-3a)^2+a=(a+1)^2-31a

Video Solution

Solution Steps

00:00 Solve
00:04 Let's use the shortened multiplication formulas to open the parentheses
00:20 Calculate the multiplications and squares
00:59 Collect like terms
01:09 Simplify what we can
01:17 Isolate A
01:31 Any squared expression is always greater than 0
01:36 Therefore it cannot be equal to a negative, no solution
01:39 And this is the solution to the question

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Expand (53a)2 (5-3a)^2 .
  • Step 2: Expand (a+1)2 (a+1)^2 .
  • Step 3: Combine like terms and set the equation to zero.
  • Step 4: Solve for a a .

Now, let's work through each step:

Step 1: Expand (53a)2 (5-3a)^2 :

(53a)2=2530a+9a2 (5-3a)^2 = 25 - 30a + 9a^2 .

Step 2: Expand (a+1)2 (a+1)^2 :

(a+1)2=a2+2a+1 (a+1)^2 = a^2 + 2a + 1 .

Step 3: Substitute the expressions into the equation:

2530a+9a2+a=a2+2a+131a 25 - 30a + 9a^2 + a = a^2 + 2a + 1 - 31a .

Step 4: Simplify both sides:

Left-hand side: 9a229a+25 9a^2 - 29a + 25 .

Right-hand side: a229a+1 a^2 - 29a + 1 .

Set the equation 9a229a+25=a229a+1 9a^2 - 29a + 25 = a^2 - 29a + 1 .

Simplify the equation:

Subtract a229a+1 a^2 - 29a + 1 from both sides:

9a2a229a+29a+251=0 9a^2 - a^2 - 29a + 29a + 25 - 1 = 0 .

8a2+24=0 8a^2 + 24 = 0 .

8a2=24 8a^2 = -24 .

Divide through by 8:

a2=3 a^2 = -3 .

Since a2=3 a^2 = -3 , there are no real solutions for a a because no real number squared equals a negative number. Thus, there are no solutions in the real number set.

Therefore, the correct answer is No solution.

Answer

No solution