Solve the Logarithmic Equation: n log_x a - Step by Step Guide

Question

nlogxa= n\log_xa=

Video Solution

Solution Steps

00:00 Solve
00:03 We will use the power logarithm formula
00:10 We will use this formula in our exercise
00:17 And this is the solution to the question

Step-by-Step Solution

To solve this problem, we need to transform the expression nlogxa n\log_xa using the properties of logarithms.

  • Step 1: Identify the expression: We are given nlogxa n\log_xa , where logxa \log_xa is the logarithm of a a to the base x x , and n n is a coefficient.
  • Step 2: Use the power property of logarithms: The power property of logarithms states that if we have a logarithmic term multiplied by a coefficient n n , like nlogb(a) n\log_b(a) , it can be rewritten as logb(an) \log_b(a^n) .
  • Step 3: Apply the power property: By applying this property to nlogxa n\log_xa , we rewrite it as logx(an) \log_x(a^n) . This is because multiplying the logarithmic term by an external coefficient is equivalent to taking the argument a a to the power of that coefficient, n n .
  • Step 4: Conclusion about the transformation: This transformation demonstrates how the power property helps simplify expressions involving logarithms by turning multiplication into an exponentiation within the logarithm itself.

Therefore, the expression nlogxa n\log_xa can be transformed and expressed as logxan \log_xa^n by using the power property of logarithms.

Answer

logxan \log_xa^n