Solve the Logarithm Equation: x∙log_m(1/3^x)

xlogm13x= x\log_m\frac{1}{3^x}=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Solve
00:04 We will use the formula to convert a fraction to a negative exponent
00:09 We will use this formula in our exercise
00:19 We will use the formula for the logarithm of a power
00:24 We will use this formula in our exercise
00:36 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

xlogm13x= x\log_m\frac{1}{3^x}=

2

Step-by-step solution

To solve this problem, we will apply the rules of logarithms as follows:

  • Firstly, rewrite the expression logm13x \log_m \frac{1}{3^x} using the Quotient Rule:
  • logm13x=logm1logm3x \log_m \frac{1}{3^x} = \log_m 1 - \log_m 3^x

  • Since logm1=0 \log_m 1 = 0 , the expression simplifies to:
  • 0logm3x=logm3x 0 - \log_m 3^x = -\log_m 3^x

  • Apply the Power Rule to simplify logm3x-\log_m 3^x:
  • logm3x=xlogm3 -\log_m 3^x = -x \log_m 3

  • Substitute back to the original expression xlogm13x x \log_m \frac{1}{3^x} :
  • x(xlogm3)=x2logm3 x ( -x \log_m 3) = -x^2 \log_m 3

Therefore, the solution to the problem in terms of simplifying the expression is x2logm3 -x^2 \log_m 3 .

3

Final Answer

x2logm3 -x^2\log_m3

Practice Quiz

Test your knowledge with interactive questions

\( \frac{1}{\log_49}= \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Rules of Logarithms questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations