Solve the Nested Exponent Expression: (16^6)^7

Insert the corresponding expression:

(166)7= \left(16^6\right)^7=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Insert the corresponding expression:

(166)7= \left(16^6\right)^7=

2

Step-by-step solution

To solve the expression (166)7(16^6)^7, we will use the power of a power rule for exponents. This rule states that when you raise a power to another power, you multiply the exponents. Here are the steps:

  • Identify the components: The base is 16, and the inner exponent is 6. The outer exponent is 7.
  • Apply the power of a power rule: According to the rule, (am)n=amn(a^m)^n = a^{m \cdot n}. Thus, (166)7=1667(16^6)^7 = 16^{6 \cdot 7}.
  • Multiply the exponents: Calculate the product of the exponents 6×76 \times 7. This gives us 42.
  • Rewrite the expression: Substitute the product back into the expression, giving us 164216^{42}.

Therefore, the simplified expression is 1642\mathbf{16^{42}}.

Checking against the answer choices, we find:
1. 164216^{42} is given as choice 1.
2. Other choices do not match the simplified expression.
Choice 1 is correct because it accurately reflects the application of exponent rules.

Consequently, we conclude that the correct solution is 1642\mathbf{16^{42}}.

3

Final Answer

1642 16^{42}

Practice Quiz

Test your knowledge with interactive questions

\( 112^0=\text{?} \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Exponents Rules questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations