Solve the following equation:
−(x+3)2=4x
To solve −(x+3)2=4x, follow these steps:
- Step 1: Expand the left side: −(x+3)2=−(x2+6x+9).
- Step 2: Distribute the negative sign: −x2−6x−9.
- Step 3: Set the equation by moving terms to the right: −x2−6x−9=4x becomes −x2−6x−9−4x=0.
- Step 4: Simplify to standard quadratic form: −x2−10x−9=0.
- Step 5: Applying the quadratic formula where a=−1, b=−10, c=−9:
- x=2⋅(−1)−(−10)±(−10)2−4⋅(−1)⋅(−9).
- x=−210±100−36.
- x=−210±64.
- x=−210±8.
- Two solutions arise: x=−210+8=−9 and x=−210−8=−1.
Therefore, the solutions are x1=−1 and x2=−9.
Thus, the correct answer is x1=−1,x2=−9.
x1=−1,x2=−9