Solve the Quadratic Inequality: 3x² + 6x > 0

Question

Look at the following function:

y=3x2+6x y=3x^2+6x

Determine for which values ofx x the following is true:

f(x) > 0

Step-by-Step Solution

To solve the inequality 3x2+6x>0 3x^2 + 6x > 0 , we first factor the quadratic equation.

  • Step 1: Factor the quadratic expression:
    3x2+6x=3x(x+2) 3x^2 + 6x = 3x(x + 2) .
  • Step 2: Find the roots by setting the factored expression equal to zero:
    - 3x(x+2)=0 3x(x + 2) = 0 gives x=0 x = 0 and x=2 x = -2 as roots.
  • Step 3: Determine the intervals dictated by the roots on a number line:
    - The critical points divide the number line into three intervals: (,2) (-\infty, -2) , (2,0) (-2, 0) , and (0,) (0, \infty) .
  • Step 4: Analyze the sign of 3x(x+2) 3x(x + 2) in each interval:
    • Interval (,2) (-\infty, -2) : Pick a test point like x=3 x = -3 .
      3(3)((3)+2)=3(3)(1)=9>0 3(-3)((-3) + 2) = 3(-3)(-1) = 9 > 0 . Hence, f(x)>0 f(x) > 0 .
    • Interval (2,0) (-2, 0) : Pick a test point like x=1 x = -1 .
      3(1)((1)+2)=3(1)(1)=3<0 3(-1)((-1) + 2) = 3(-1)(1) = -3 < 0 . Hence, f(x)<0 f(x) < 0 .
    • Interval (0,) (0, \infty) : Pick a test point like x=1 x = 1 .
      3(1)((1)+2)=3(1)(3)=9>0 3(1)((1) + 2) = 3(1)(3) = 9 > 0 . Hence, f(x)>0 f(x) > 0 .

Therefore, the solution to the inequality 3x2+6x>0 3x^2 + 6x > 0 is:
x>0 x > 0 or x<2 x < -2 .

The correct choice from the given options is .

Thus, when x>0 x > 0 or x<2 x < -2 , the function f(x)=3x2+6x f(x) = 3x^2 + 6x is greater than zero.

Answer

x > 0 or x < -2