Solve the Square Root Expression: Finding √(36x)

Solve the following exercise:

36x= \sqrt{36x}=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Simplify the following expression
00:03 The root of number (A) multiplied by the root of another number (B)
00:06 Equals the root of their product (A times B)
00:10 Apply this formula to our exercise, and convert from root 1 to two
00:16 Break down 36 to 6 squared
00:24 The root of any number(A) squared cancels out the square
00:27 Apply this formula to our exercise
00:30 This is the solution

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Solve the following exercise:

36x= \sqrt{36x}=

2

Step-by-step solution

In order to simplify the given expression, apply the following two laws of exponents:

a. The definition of root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

b. The law of exponents for an exponent applied to terms in parentheses:

(ab)n=anbn (a\cdot b)^n=a^n\cdot b^n

Begin by converting the square root to an exponent using the law of exponents mentioned in a:

36x=(36x)12= \sqrt{36x}= \\ \downarrow\\ (36x)^{\frac{1}{2}}=

Next, use the law of exponents mentioned in b and apply the exponent to each factor within the parentheses:

(36x)12=3612x12=36x=6x (36x)^{\frac{1}{2}}= \\ 36^{\frac{1}{2}}\cdot x^{{\frac{1}{2}}}=\\ \sqrt{36}\sqrt{x}=\\ \boxed{6\sqrt{x}}

In the final steps, we first converted the power of one-half applied to each factor in the multiplication back to square root form, again, according to the definition of root as an exponent mentioned in a (in the opposite direction) and then calculated the known square root of 36.

Therefore, the correct answer is answer c.

3

Final Answer

6x 6\sqrt{x}

Practice Quiz

Test your knowledge with interactive questions

Solve the following exercise:

\( \sqrt{\frac{2}{4}}= \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Rules of Roots questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations